
SeisLab for Matlab

MATLAB Software for Seismic Data Analysis — A Tutorial

November 19, 20061

1S4M 2.01 PD.tex

LinuxTM is a registered trademark of Linus Torvalds

MatlabTM is a trademark of The MathWorks, Inc.

MicrosoftTM and Microsoft WindowsTM are trademarks of Microsoft Corp.

ProMAX is a trademark or registered trademark of Landmark Graphics Corporation

SunTM and SolarisTM are trademarks of Sun Microsystems, Inc. Inc.

UNIX R© is a registered trademark of The Open Group.

Contents

1 INTRODUCTION 1

1.1 General . 1

1.2 Initialization . 2

1.3 On-line help . 2

1.4 Input arguments of functions . 3

1.5 Test data sets . 4

1.5.1 Seismic data . 4

2 SEISMIC DATA 5

2.1 A brief look at some functions for seismic data . 5

2.2 Headers . 9

2.3 Description of seismic structures . 10

2.4 Operator overloading . 14

2.4.1 Unary plus (+) and minus (-) . 14

2.4.2 Addition and subtraction . 15

2.4.3 Multiplication . 16

2.4.4 Element-by-elements multiplication . 16

2.4.5 Division . 16

2.4.6 Element-by-element division . 16

2.4.7 Element-by-element exponentiation . 17

2.4.8 Absolute value . 17

2.4.9 Sign . 17

2.4.10 Logarithm . 17

2.4.11 Exponential function . 17

iii

iv CONTENTS

2.4.12 Real part . 17

2.4.13 Imaginary part . 17

2.5 Description of selected functions for seismic data analysis 18

read segy file . 18

s align . 19

s append . 19

s attribute . 19

s check . 20

s compare . 20

s convert . 20

s convolve . 21

s correlate . 21

s cplot . 21

s create qfilter . 23

s create wavelet . 23

s filter . 24

s header . 24

s header math . 25

s history . 25

s header plot . 25

s header sort . 25

s ispectrum . 25

s principal components . 26

s phase rotation . 28

s reflcoeff . 29

s resample . 30

s rm trace nulls . 30

s select . 30

s shift . 31

s spectrum . 31

s stack . 31

s tools . 32

CONTENTS v

s wiener filter . 32

s wplot . 32

show segy header . 34

write segy file . 34

3 WELL LOGS 35

3.1 A brief look at some functions for well log curves . 35

3.2 Description of log structures . 38

3.3 Description of functions for well log analysis . 39

l check . 39

l checkshot . 40

l compare . 40

l convert . 40

l crossplot . 41

l curve math . 42

l interpolate . 43

l lithocurves . 43

l lithoplot . 44

l redefine . 44

l regression . 46

l rename . 49

l resample . 50

l select . 50

l plot . 50

l plot1 . 51

l tools . 51

l trim . 51

read las file . 52

show las header . 52

write las file . 52

4 GENERAL TOPICS 53

4.1 Initialization Function . 53

vi CONTENTS

presets . 53

4.2 Input Arguments via a Global Structure . 58

List of Figures

1.1 Filtered Gaussian noise; created by s plot(s data) 4

2.1 Wiggle-trace plot with default settings. 5

2.2 Wiggle-trace plot with traces labeled by CDP, increasing from right to left. 7

2.3 Comparison of unfiltered (black) and filtered (red) seismic traces. 8

2.4 Plot of CDP locations. 9

2.5 Illustration of the effect of the abs operator (black) and of unary minus (red). . . . 15

2.6 Wiggle trace plot on top of color plot of the same seismic data. 22

2.7 Seismic display created by s ispectrum with three windows; the associated spectra
are shown in the next figure. 27

2.8 Spectra of the seismic data in the three windows shown on the seismic display above
(created by s ispectrum). 27

2.9 Plot of seismic traces in different colors. 34

3.1 Plot of all traces of log structure logout. 36

3.2 Cross-plot of velocity and density for two lithologies: sand (yellow diamonds) and
shale (gray dots); created by two calls to l crossplot 41

3.3 P-velocity and density with lithology (shale, wet sand, hydrocarbon sand indicated
by different colors and markers; created by l lithoplot 45

3.4 Density log with superimposed trend curves . 48

vii

viii LIST OF FIGURES

1

Chapter 1

INTRODUCTION

1.1 General

This manual describes MATLAB functions/macros for input, output, and manipulation/analysis
of seismic data and well log curves, as well as functions that manipulate tables, probability dis-
tributions, and geologic models. The seismic-related functions described here are not intended for
seismic data processing but rather for the more experimental analysis of small data sets. They
should facilitate and speed up testing of new ideas and concepts. Likewise, the well log functions
are intended for simple log manipulation steps like those, for example, required for their use with
seismic data.

Data sets representing seismic data, log data, and tables are represented by MATLAB structures.
At first glance, the description of all the possible fields of these structures may make them look
complicated. However, a user may never need to explicitly create one of these fields himself. These
fields are all created by certain functions as part of their normal output. It was a design decision
to make the data in these structures visible and easily accessible. A user who understands the
concept of Matlab structures can access any piece of information encapsulated in these structures.

A truly object-oriented design of a seismic data set would make all these details invisible — acces-
sible only by means of specific tools. A user could not “mess up” an object, but — by the same
token — he would loose a great deal of flexibility. Since it is rapid testing of new ideas and quick
development of tools not available anywhere else that are the main purpose of these functions, easy
access to every item of a data set is highly desirable.

This manual assumes that the user is reasonably familiar with MATLAB and, in particular, with
MATLAB structures and cell arrays, which were introduced in MATLAB 5 and are used extensively.
Hence, the functions described here will not work with earlier versions of MATLAB. Furthermore,

2

I have used the functions only under Windows. It is not inconceivable that there may be problems
— in particular with file I/O and/or graphics — under UNIX/Linux.

The manual is not meant to be an exhaustive description of all the features, parameters, keywords,
etc. used in all the functions, but rather intended to provide an overview over the functionality
available and examples of the use of specific functions. The MATLAB help facility can be used
to find out what arguments a particular function accepts. Wherever practical, default settings of
parameters have been chosen so that the functions can be useful with a minimal number of input
arguments.

Most functions can be grouped into one of five different categories:1

• seismic-related functions,

• log-related functions,

• functions that deal with probability distributions.

• functions that deal with tables (this last data type is still somewhat in flux; consequently,
this manual is not yet very specific).

• functions that manipulate subsurface models

These categories are discussed below.

1.2 Initialization

In order to function properly SeisLab needs certain parameters. These parameters are set by
function presets which, it turn, calls two other functions, systemDefaults and userDefaults.
The latter sets parameters that a user is likely to customize (such as the directories where data files,
such as SEG-Y files or LAS files with well data, are located). Function systemDefaults, on the
other hand, sets those parameters that do not depend on a user’s environment. In any case, every
parameter set in systemDefaults can be changed in userDefaults. Since these parameters are
used in many functions, a session using SeisLab commands must be preceded by

presets

More information about presets can be found in Section 4.1 on page 53 ff.

1.3 On-line help

Matlab’s standard help tools, help and lookfor are, of course, available for SeisLab functions
as well. In addition, the following functions are intended to locate quickly functions that perform
specific tasks for a particular type of data structure.

1Only functions from the first two categories are included in the public-domain version. Hence, occasional refer-

ences to functions from these other categories should be ignored in the public-domain version of SeisLab.

1.4. INPUT ARGUMENTS OF FUNCTIONS 3

• l tools List functions that deal with well logs.

• s tools List functions that deal with seismic data.

Without argument each of these functions displays a list of all the functions available for the
specific type of data set, together with a one-line explanation of their purpose. In order to restrict
the output a search term can be added. Thus

>> s tools plot

s 2d spliced synthetic Plot synthetic spliced into seismic line

s 3d header plot Make contour plot of one header as function of ...

s 3d spliced synthetic Plot synthetic spliced into inline and cross-line ...

s compare Plot one seismic data set on top of another for ...

s cplot Plot seismic data in form of color-coded pixels ...

s header plot Plot header values of a seismic data set

s ispectrum Interactively pick windows on seismic plot and ...

s plot "Quick-look" plot of seismic data (color if more ...

s spectrum Plot amplitude and/or phase spectra of one or ...

s wedge model Compute/plot synthetic from wedge model and ...

s wplot Plot seismic data in wiggle-trace format

displays only functions that are related to plotting of seismic data sets; ellipses (...) indicate
truncated lines.

The statement p tools sample shows available sample distributions.

1.4 Input arguments of functions

The majority of SeisLab functions has required and optional input arguments. Required arguments
precede optional arguments and are “positional”; they are in a specific position (e.g. first, second,
etc.) in the list of arguments. The order of subsequent optional input arguments, if any, is
arbitrary. They consist of a keyword followed by one or more values — all encapsulated in a cell
array. Keywords are strings. The following SeisLab function call, which plots the seismic data set
seismic in wiggle-trace format, illustrates this.

s wplot(seismic,{‘trough fill’,[0.6 0.6 0.6]},{‘annotation’,‘cdp’})

The first input argument, seismic is required. The other two input arguments — in curly brackets
— are optional. In particular, {‘trough fill’,[0.6 0.6 0.6]} specifies that the trough of the
seismic wiggles, which is normally not filled with any color, should be gray (the three-component
vector [0.6 0.6 0.6] is the RGB representation of a darker shade of gray). The other argument,
{‘annotation’,‘cdp’}, specifies that the traces should be annotated by CDP number. . The
default annotation is trace number.

4

1.5 Test data sets

For testing and demonstration purposes it is frequently desirable to have quick access to test data.
Hence there are functions that create a variety of test data sets. It is a common feature of these
functions that they have no input arguments and only one output argument: the data set. They
generally follow the a naming convention of the form x data and x datann where x stands for the
letters l, m, p, s, t and nn is a one-digit or two-digit number. Examples are:

1.5.1 Seismic data

• s data creates a seismic data set consisting of 12 traces, 1000 ms long, of filtered random
noise as shown in Figure 1.1.

27−Aug−2003 20:46:47Manual_TD

0 2 4 6 8 10 12
0

100

200

300

400

500

600

700

800

900

1000

T
im

e
(m

s)

Trace number

Filtered Gaussian noise

Figure 1.1: Filtered Gaussian noise; created by s plot(s data)

Chapter 2

SEISMIC DATA

2.1 A brief look at some functions for seismic data

The two statements

seismic = read segy file ;

s wplot(seismic)

read an SEG-Y file and display the traces in a figure window in form of a wiggle-trace/variable
area plot as shown in Figure 2.1. The function read segy file can take a number of arguments.
One of them, of course, is the file name; but if it is not given, a file selection box allows interactive

11−Sep−2005 15:36:21Manual_1a

0 5 10 15 20
0

500

1000

1500

2000

2500

Trace number

T
im

e
(m

s)

Test Data 1

Figure 2.1: Wiggle-trace plot with default settings.

5

6 CHAPTER 2. SEISMIC DATA

file selection. Whenever a file is selected interactively the full path together with the name of
the file selected is printed to the screen. (The file selection function also remembers the directory
from which the file was copied and, on a subsequent request for an SEG-Y file, will open this
directory right away.) If read segy file is part of a MATLAB script this file name can be
copied conveniently from the MATLAB window to the script so that the file will be read without
user intervention the next time the script is run. File name and path name are also stored in
S4M.filename and S4M.pathname, i.e. in fields of the global structure S4M initialized in function
presets. The file name without extension is also written to the field name of the seismic structure.

The data read from the SEG-Y file are stored in the structure seismic. This structure is basically a
container which collects different pieces of data (seismic traces, headers, start time, sample interval,
etc.) under one name. The structure seismic is then input to the plot function s wplot (most
seismic-related functions start with “s ”, and the “w” in s wplot stands for wiggle — s cplot makes
seismic plots with amplitudes represented by color).

The function s wplot has one required argument, the name of the seismic structure. All other
arguments are optional. Figure 2.1 shows the plot obtained with these defaults. The traces are
numbered sequentially. Because no title was specified explicitly the string in the field name of the
seismic structure (in this example Test Data 2) is used as a default title.

Using some of the optional arguments one can tailor the two statements to specific needs. For
example,

seismic data = read segy file(‘C:\Data\Test Data 2.sgy’,{‘times’,500,1500}, ...

{‘traces’,‘cdp >= 1650 & cdp <=1660’});
s wplot(seismic data,{‘direction’,‘r2l’},{‘annotation’,‘cdp’})

will read from file C:\Data\test.sgy all traces with CDP numbers from 1650 to 1660 in the time
range from 500 to 1500 ms. If the function read segy file is used with any parameters, the
filename must be the first one; but it can be an empty string ‘’, and in this case the file can be
selected interactively. The other two input parameters are cell arrays. The first element of each
cell array is a keyword which tells the program how to interpret the subsequent elements. The
keyword ‘times’ signals that the next two numbers are start and end time of the trace segment
to be retrieved. The other keyword ‘traces’ indicates that the second element of the cell array,
‘cdp >= 1650 & cdp <=1660’, relates to the selection of a subset of the traces. This subset
can be defined in various ways; here this is done via a logical condition for header values CDP. By
default, read segy file reads (and stores) all trace header values specified as essential in the
SEG-Y standard (this includes CDP), but then discards all those that turn out to be identically
zero.

Of course, read segy file can read any user-specified trace header. Trace headers explicitly
requested are not discarded even if they turn out to be zero for every trace.

In this example, the output of read segy file is stored in the seismic structure seismic data

which is then input to s wplot. Here s wplot has two optional arguments — cell arrays whose
first elements are keywords. The keyword direction indicates the plot direction. The default is

2.1. A BRIEF LOOK AT SOME FUNCTIONS FOR SEISMIC DATA 7

11−Sep−2005 15:36:21Manual_1a

165016521654165616581660
500

600

700

800

900

1000

1100

1200

1300

1400

1500

CDP number
T

im
e

(m
s)

Test Data 2

Figure 2.2: Wiggle-trace plot with traces labeled by CDP, increasing from right to left.

left-to-right, but here it is right-to-left. The other keyword, annotation, specifies which header to
use to annotate traces. The plot obtained with these two commands is shown in Figure 2.2. Since
no plot title has been defined the name of the input data set, seismic data, is used.

The code fragments that created Figures 2.1 and 2.2 come from one and the same MATLAB script,
Manual 1. One of the first statements in this script is the function presets (see page 53 ff.).
which sets a number of global variables, among them a plot label for the lower left corner of plots
and the date and the time the script was started. It is this date/time combination that is displayed
in the lower right corner of the plots. Consequently, all plots created by the script in a particular
run bear the same time stamp.

Another code fragment that illustrates the use of SeisLab functions is

>> filtered seismic = s filter(seismic data,{‘ormsby’,5,10,20,30});
>> s compare(seismic data,filtered seismic) ;

where the seismic data set seismic data of the previous example is filtered with a trapezoidal
filter with corner frequencies 5, 10, 20, 30 Hz and then compared with the unfiltered data. Unlike
in the previous plot, where the default color is black, s compare uses color by default; a gray-scale
reproduction of Figure 2.3 does not do justice to this kind of comparison.

Presently there are some 130 utility-type functions to operate on seismic data sets.1 The best way
to find out what is available is to run function

1Only a subset of the available seismic functions is included in the public-domain version.

8 CHAPTER 2. SEISMIC DATA

11−Sep−2005 15:36:21Manual_1a

0 2 4 6 8 10 12
500

600

700

800

900

1000

1100

1200

1300

1400

1500

Trace number

T
im

e
(m

s)

Test Data 2 vs. filtered Test Data 2

Figure 2.3: Comparison of unfiltered (black) and filtered (red) seismic traces.

s tools

which provides a one-line description of all functions which deal with seismic data sets. To make
the list more specific a keyword may be added. For example,

s tools seg

lists only those functions that deal with SEG-Y data files (the search is not case sensitive):

read segy file Read disk file in SEG-Y format

show segy header Output/Display EBCDIC header of SEG-Y file as ASCII

write segy file Write disk file in SEG-Y format

2.2. HEADERS 9

2.2 Headers

Trace headers (headers, for short) store trace-specific information such as offset, trace location, CDP
number, in-line number, cross-line number, etc. and play a major role in seismic data processing.
As mentioned above, when an SEG-Y file is read a number of headers are read by default; other
headers may be read as requested by input arguments of read segy file. Additional headers will
be added by certain functions: s align, for example, which aligns (flattens) an event on a seismic
section stores the shifts applied to each trace in a header value. This way the shifts can be undone
if necessary.

Headers are fields in a seismic structure and are discussed again in the section on seismic structures.
However, as long as established functions are used for their manipulation nothing needs to be known
about the way they are stored in the seismic structure. Assume that s3d is a 3-d seismic data set
with headers cdp x and cdp y representing CDP coordinates (while the only restriction on header
names is that they must comply with the rules for MATLAB variables it appears to be advantageous
to use the same names ProMAX uses). Then

s header plot(s3d,{‘cdp x’,‘cdp y’},{‘colors’,‘ro’})

creates the base map shown in Figure 2.4 by plotting red circles (’ro’) at points defined by CDP X
and CDP Y pairs.

2000−12−26 (16:22:58)Manual_2

8.834 8.834 8.8341 8.8341 8.8342 8.8343 8.8343 8.8344 8.8344

x 10
6

2.3485

2.3485

2.3486

2.3487

2.3487

2.3487

2.3488

2.3489

2.3489
x 10

6 Headers of seismic data set "s3d"

CDP X (m)

C
D

P
 Y

 (
m

)

Figure 2.4: Plot of CDP locations.

10 CHAPTER 2. SEISMIC DATA

The same base map can be created by means of the standard Matlab plot commands

>> figure

>> plot(s gh(s3d,‘cdp x’),s gh(s3d,‘cdp y)’,‘ro’,‘LineWidth’,1.5)

>> xlabel([s gd(s3d,‘cdp x’),‘(’,s gu(s3d,‘cdp x’),‘)’])

>> ylabel([s gd(s3d,‘cdp y’),‘(’,s gu(s3d,‘cdp y’),‘)’])

>> title(’Headers of seismic data set "s3d"’,‘FontSize’,14,‘Color’,‘r’)

>> grid on

>> time stamp

which is more tedious. It employs the functions

>> header values = s gh(seismic,header mnemonic)

>> header units = s gu(seismic,header mnemonic)

>> header description = s gd(seismic,header mnemonic)

to retrieve, from seismic data set seismic, a row vector of header values and a text strings with
units of measurement and a description, respectively, of the header with mnemonic header mnemonic

(header mnemonic is a character string).

Obviously, the header values could be extracted directly from the matrix seismic.headers and
units of measurement and header description from the cell array seismic.header info. How-
ever, using the above functions insulates a user from the need to know in what particular row of
seismic.headers and seismic.header info the requested information is stored. Also, if the
global variable S4M.case sensitive is set to 0 (false) — see start-up function presets (page 53)
— it does not matter if the header mnemonic specified is in lower case, upper case, capitalized, or
consists of any mixture of lower-case and upper-case characters. Incidentally, function s gh has a
second, optional output argument; it is the appropriate row of cell matrix seismic.header info,
a three-element cell vector with the header mnemonic, the header’s units of measurement, and the
header description.

2.3 Description of seismic structures

The seismic-related functions assume that a seismic data set is represented by a structure which
— in addition to the actual seismic traces — contains necessary ancillary information in form of
required parameters, optional parameters, and headers. Parameters are pieces of information such
as start time, sample interval, etc. which pertain to all traces of the seismic structure. Headers, on
the other hand, are trace specific. They can vary from one trace to the next. Hence, each header
has a value for each trace. Seismic data proper are stored in a matrix whose columns represent
individual traces. In general, each row in this matrix represents a specific time. However, it is
also possible that each row represents a frequency or a depth. Hence, the term “time” is used in a
somewhat loose sense; it could also mean some other dimension. For this reason seismic structures
have a field called units which defines the units of measurements. The default is ms.

The simplest seismic structure can be created by the MATLAB statement

2.3. DESCRIPTION OF SEISMIC STRUCTURES 11

>> seismic = s convert(matrix,start time,sample interval)

where matrix denotes a matrix of seismic trace values, start time is the time of the first sample
and sample interval the sample interval. The resulting structure seismic has the eight fields
required of a seismic structure. They are described below, and the description uses the following
variables

nsamp number of samples per trace
ntr number of traces per data set
nh number of headers in the data set

In this section the name seismic is used to refer to a seismic structure. Thus, seismic.traces
denotes the field traces of a seismic structure.

• type type of data set. For seismic data it is set to the string ’seismic’. This field is
intended to allow interactive programs to identify quickly the type of data set represented
by a particular structure; i.e. distinguish between seismic data sets, well logs, probability
distributions, etc.

• tag an attribute that describes more clearly the kind of seismic data sets. Possible values
are: ’wavelet’, ’impedance’, ’reflectivity’, and the catch-all ’unspecified’.

• name Name of the data set; by default, for data sets read from SEG-Y files, it is the file name.

• traces A matrix of numeric values with dimension nsamp by ntr. Each column of the
structure field traces represents a seismic trace.

• first Time (or frequency, or depth) associated with the first row of traces.

• last Time (or frequency, or depth) associated with the last row of traces.

• step Sample interval; obviously (last - first)/step +1 = nsamp.

• units Units of measurements for time (or frequency, or depth); examples are ‘ms’, ‘Hz’, ‘m’,
‘ft’.

In addition to the required fields seismic functions create and use a number of additional structure
fields. Most frequently used are:

• headers A matrix of numeric header values with dimension nh by ntr. Each row of this
matrix represents the value of a particular header for each trace. Examples of such headers
are cdp, offset, etc.

• header info A cell array of strings with dimension nh by 3. Each row of this cell array lists
a header in terms of its mnemonic (first column), its units of measurement (second column),
and its description. Many headers, such as cdp, have no units of measurement; they have
‘n/a’ in column 2.

12 CHAPTER 2. SEISMIC DATA

• history A four-column cell array with a “processing history”, i.e a list of the MATLAB
functions used to create the seismic structure. Entries into this field are made automatically
by most processes unless this option is turned off (see description of the function presets).

• null Null value or no-data value. This value, in general NaN, is set by a process if some of
its output data in traces are not valid. This may happen if noise spikes have been removed,
if data sets with differing start times or end times are concatenated, etc. While it is common
to zero or to clip bad data (such as noise burst, data with NMO stretch, etc.) it is frequently
more prudent to have a special value that identifies them as invalid. If the seismic structure
has no null field or if seismic.null == 0 then either all data are valid or invalid data
have simply been zeroed. When data are written to an SEG-Y file (see write segy file)
any NaNs are replaced by zeros.

• header null Null value or no-data value. This value, in general NaN, is set by a process
if some of its output data in headers are not valid. This may happen if data sets with
differing headers are concatenated (e.g. synthetics spliced into real data), etc. When headers
are written to an SEG-Y file any NaNs are be replaced by zeros.

• time One time value for each row of data matrix seismic.trace allowing non-uniformly
spaced data. In this case step is set to zero

Furthermore there can be an arbitrary number of fields representing parameters

Below is an example of the simplest seismic structure:

wavelet

type : ’seismic’ Type of structure
tag : ’wavelet’ Tag; more specific description of dataset

name : ’Ormsby (zero-phase)’ Name
first : -40 Time of first sample
step : 4 Sample interval in msec
last : 40 Time of last sample in msec

units : ‘ms’ Units of measurement of time axis
traces : [21x1 double] One-column array with 21 entries

It represents an 80-ms wavelet with 4 ms sample interval and centered at time zero. While it may
be advantageous to have more information attached to the structure (for example the CDP or
in-line and cross-line number for which the wavelet was determined, or the processing history) this
is not required. However, even if no header is explicitly specified there is an implied pseudo-header
trace no that can be used like any other header. It is a sequential number of each trace and is
called pseudo-header since it is not attached to a specific trace; thus if one removes a trace from
a data set the pseudo-header trace no of all traces following the one that was removed will be
decreased by one. “Real” headers of a trace, on the other hand, are not affected if one or more
traces are added or removed from a data set.

The following example shows a more elaborate structure output by the function
read segy file discussed below which reads an SEG-Y file.

2.3. DESCRIPTION OF SEISMIC STRUCTURES 13

seismic

type : ’seismic’ Type of structure
tag : ’unspecified’ Tag; more specific description of dataset

name : ’Test Data 3’ Name
line number : 1 Line number

traces per record : 48 Traces per record
first : 0 Time of first sample
step : 2 Sample interval in msec
last : 2000 Time of last sample in msec

units : ‘ms’ Units of measurement for the time axis
header info : [6x3 char] Descriptions of the header mnemonics

headers : [6x480 double] Header values
traces : [1001x480 double] Array (480 traces with 1001 samples, each)

history : 1x4 cell

The eight fields familiar from the first example indicate that the data set consists of 480 traces
with 1001 samples each and a sample interval of 2 ms. Furthermore, there are the scalar fields
line number, traces per record and units which were take directly from the binary reel
header of the SEG-Y file. Of generally more interest are the trace headers. This seismic data set
has six trace headers. Information about these trace headers is stored in the field header info.
They resemble the way ProMAX lists headers. The six header mnemonics as well as the associated
units of measurement and header descriptions are shown below.

Header mnemonic Units Header description
‘ds seqno’ ‘n/a’ ‘Trace sequence number within line’

‘ffid’ ‘n/a’ ‘Original Field record number’

‘o trace no’ ‘n/a’ ‘Trace sequence number within original field record’

‘cdp’ ‘n/a’ ‘CDP ensemble number’

‘seq cdp’ ‘n/a’ ‘Trace sequence number within CDP ensemble’

‘iline no’ ‘n/a’ ‘In-line number

None of these headers is associated with units of measurement and so all entries in the second
column are ‘n/a’. This would have been different if offsets or coordinates had been among the
headers. The most convenient and informative way of looking at the headers of seismic data
structure seismic is to execute the command

s header(seismic).

By default, read segy file initially reads 22 pre-set trace headers but then discards all those
whose values are zero for every trace. The first five headers listed above represent the remaining
non-zero preset trace headers. The sixth header (iline no) is a user-requested header read from
a user-defined byte location in the binary trace header of the SEG-Y file.

There are some mild restrictions on header names (they must satisfy all requirements placed on
MATLAB variables). Furthermore, it is highly recommended that the following header mnemonics
be used where applicable since they are expected to be present in certain functions. They correspond
to those used in ProMAX and, hence, ProMAX users should not find them difficult to remember.

14 CHAPTER 2. SEISMIC DATA

Header mnemonics Header descriptions
cdp CDP ensemble number

offset Source-receiver distance

iline no In-line number

xline no Cross-line number

cdp x X-coordinate of CDP

cdp y Y-coordinate of CDP

sou x X coordinate of source

sou y Y coordinate of source

sou elev Surface elevation at source

rec x X coordinate of receiver

rec y Y coordinate of receiver

rec elev Receiver elevation

source Energy source point number

sou depth Source depth below surface

rec h2od Water depth at receiver

sou h2od Water depth at source

ffid Field file ID number

Table 2.1: Partial list of headers read from SEG-Y files; the complete list can be obtained with the
help read segy file command.

The last field in the above structure is the history field. This is an optional field generally
created by all functions that create seismic structures (e.g. read segy file). Other functions
append information to this field, if it exists.

2.4 Operator overloading

Operator overloading refers to a facility in Matlab where operators such as ”+”, “-” or built-in
functions such as abs, sqrt, are given a special meaning in situations where they had none
before. An example is multiplication by a number of a Matlab structure such as a seismic data
set. Thus 3*seismic (here and in the following seismic is a seismic data set) would normally
result in an error message. However, in SeisLab the multiplication operator has been overloaded
to make this a meaningful statement for seismic data sets. In fact, 3*seismic means that the
samples of the seismic traces, i.e. the elements of the matrix seismic.traces, are multiplied by
3. In general, the operator is applied to one field of the seismic data set — the field traces. This
is a convenience feature meant to simplify interactive operations. Since it involves function calls it
is somewhat slower than direct operations on the field traces. Overloaded operators are:

2.4.1 Unary plus (+) and minus (-)

2.4. OPERATOR OVERLOADING 15

+ seismic legal, but the same as seismic
- seismic means seismic.traces → - seismic.traces

Thus

wavelet=s create wavelet(‘step’,1);

s compare(abs(wavelet),-wavelet)

is legal and results in the plot shown in Figure 2.5. The black wavelet is the absolute value of the
original one (the abs operator is introduced below), the red wavelet had the sign flipped.

11−Sep−2005 15:36:21Manual_1a

−60

−40

−20

0

20

40

60

T
im

e
(m

s)

Ormsby (zero−phase, 10−20−40−60 Hz) vs. Ormsby (zero−phase, 10−20−40−60 Hz)

Figure 2.5: Illustration of the effect of the abs operator (black) and of unary minus (red).

2.4.2 Addition and subtraction

seismic ± a means seismic.traces → seismic.traces ± a

a ± seismic means seismic.traces → a ± seismic.traces

The variable a can be a constant or a matrix with as many rows as there are samples and as
many columns as there are traces in the seismic data. But it can also be a row vector with as
many elements as there are traces or a column vector with as many elements as there are seismic
samples. In the former case a is element-by-element added to each row (time-slice), in the latter
case it is added element-by-element to each trace.

16 CHAPTER 2. SEISMIC DATA

2.4.3 Multiplication

seismic * a means seismic.traces → seismic.traces * a

seismic.traces → a * seismic.traces, i.e. the same result as seismic * a

The variable a should be a scalar (1×1 matrix).

2.4.4 Element-by-elements multiplication

seismic .* a means seismic.traces → seismic.traces .* a

a .* seismic means seismic.traces → a .* seismic.traces, i.e. the same result as
seismic .* a

The variable a can be a constant or a matrix with as many rows as there are samples and as
many columns as there are traces in the seismic data. But it can also be a row vector with as many
elements as there are traces or a column vector with as many elements as there are seismic samples.
In the former case each row (time-slice) is element-by-element multiplied by a, in the latter each
trace is element-by-element multiplied by a.

2.4.5 Division

seismic/a means seismic.traces → seismic.traces/a

The variable a should be a scalar (1×1 matrix).

2.4.6 Element-by-element division

seismic ./ a means seismic.traces → seismic.traces ./ a

The variable a can be a constant or a matrix with as many rows as there are samples and as
many columns as there are traces in the seismic data. But it can also be a row vector with as
many elements as there are traces or a column vector with as many elements as there are seismic
samples. In the former case each row (time-slice) is element-by-element divided by a, in the latter
each trace is element-by-element divided by a.

Thus, for example,

seismic scaled=seismic./max(seismic.traces);

normalizes traces so that the maximum of each trace is 1.

a ./ seismic means seismic.traces → a ./ seismic.traces

The variable a can be a constant or a matrix with as many rows as there are samples and as
many columns as there are traces in the seismic data. But it can also be a row vector with as

2.4. OPERATOR OVERLOADING 17

many elements as there are traces or a column vector with as many elements as there are seismic
samples. In the former case a is element-by-element divided by each row (time-slice), in the latter
case a is element-by-element divided by each trace.

2.4.7 Element-by-element exponentiation

seismicˆa means seismic.traces → seismic.traces.ˆa

2.4.8 Absolute value

abs(seismic) means seismic.traces → abs(seismic.traces)

An example of the use of the abs operation is shown in Figure 2.5, above.

2.4.9 Sign

sign(seismic) means seismic.traces → sign(seismic.traces)

This means that positive samples are replaced by 1 and negative samples by -1.

2.4.10 Logarithm

log(seismic) means seismic.traces → log(seismic.traces)

For this operation to be valid the seismic traces must have positive samples only.

2.4.11 Exponential function

exp(seismic) means seismic.traces → exp(seismic.traces)

2.4.12 Real part

real(seismic) means seismic.traces → real(seismic.traces)

2.4.13 Imaginary part

imag(seismic) means seismic.traces → imag(seismic.traces)

18 CHAPTER 2. SEISMIC DATA

2.5 Description of selected functions for seismic data analysis

At the time of this writing there were about 130 seismic-related functions.2 Only a few of them
are discussed here. (a full list can be obtained by means of the command s tools). They are
listed in alphabetical order. In general, only examples that characterize their use are provided.
The standard Matlab help command lists all parameters of a function.

read segy file

Purpose: This function reads a disk file written in SEG-Y format and outputs a seismic structure.
Input parameters allow selection of the filename, the floating point data format, special trace
headers, and a selection of the traced read as well as the time range. The simplest form is

seismic = read segy file

In this case — when no file name is specified — a file selection window pops up allowing interactive
file selection. The seismic data read are stored in the structure seismic. The full path and filename
of the file selected is printed out so that it can be pasted into a command of the form

seismic = read segy file(file name)

which does not invoke interactive file selection (unless filename is an invalid file name). The file
name without the extension is also saved in field name of the seismic structure.

A more complicated function call is

seismic = read segy file(‘’, ...

{‘headers’,{‘ILINE NO’,181,4,‘n/a’,‘In-line number’}, ...

{‘offset’,37,4,‘m’,‘Source-receiver distance’}}, ...

{‘traces’,‘cdp == 100 & offset > 100’ })

In this case the file is interactively selected (the filename is empty). Furthermore, headers iline no

and offset are read from the 4 bytes beginning at byte locations 181 and 37, respectively, and
stored in the trace header. Finally, not all traces but only those with cdp number 100 and an
offset > 100 are read.

Another example is

seismic = read segy file(filename,{‘traces’,‘mod(cdp,2) == 0’})

in which only traces with even CDP numbers are read.

It is also possible to restrict the range of times read. If a conversion from IBM floating point format
to IEEE format is required, restricting the number of traces read and the times may considerably
reduce the time required to read the data from a file. Function read segy file supports only
IBM floating point format and IEEE big-endian format.. By default, the binary header bytes 25-26
are used to determine the format. A user may, however, override this format selection.

2Only a subset of the functions are included in the public-domain release.

2.5. DESCRIPTION OF SELECTED FUNCTIONS FOR SEISMIC DATA ANALYSIS 19

s align

Purpose: This function flattens an event by aligning all traces to a reference trace.

s append

Purpose: This function appends one seismic data structures to another to form one single seismic
data structure. The simplest form is seisout = s append(seisin1,seisin2); where seisout
contains the traces of seisin1 followed by the traces of seisin2. Times of the first and the last
sample of seisout are defined by:
seisout.first = min(seisin1.first,seisin2.first);
seisout.last = max(seisin1.first,seisin2.first).

Likewise the headers of seisout are the union of the headers of seisin1 and seisin2. Times
in one input data set that are not present in the other are set to the trace null value in the output
data set. If the trace null value is NaN the field seisout.null is set to NaN. Similarly, headers
absent in one data set but present in the other are set to the header null value which may differ
from the trace null value. If the header null value is NaN the field seisout.header null is set to
NaN.

Other ways of handling the combination of the two data sets can be specified by keyword-controlled
input arguments.

s attribute

Purpose: For each trace of the input data set this function computes attributes of the seismic
traces and stores them in header(s). The attributes computed are: maximum of trace; maximum
of absolute values of trace; minimum of minimum of absolute values of trace; mean of trace; mean
of absolute values of trace; median of trace; median of absolute values of trace; RMS amplitude of
trace. The simplest form is

s attribute(seismic)

which computes and prints to the screen a summary of the attributes. If an output dataset is
provided the attributes are added to the trace headers or replace already existing headers with the
same name.

seismic = s attribute(seismic)

which adds all above listed attributes to the header

It ia also possible to specify that only a subset of the attributes be computed.

seismic=s header(s attribute(seismic,‘add ne’,‘max’,‘rms’));

20 CHAPTER 2. SEISMIC DATA

In this example s attribute computes the maximum amplitude and the RMS amplitude of each
trace, stores this information in headers named max and rms, respectively, and outputs the new
dataset.

s check

Purpose: This functions checks a seismic data structure for formal errors such as inconsistencies,
missing required fields, etc. It takes only one argument, the data set to be checked. An example is

s check(seismic)

which checks for errors of the structure seismic; if indeed errors are found, it will print messages
explaining them. Otherwise, the message No formal errors found in ‘‘seismic’’ will be
printed.

It is expected that every seismic-related function listed in this manual will pass this consistency
test; however, users may modify structures outside of these functions and, if these changes are more
severe, checking if they violate any formal requirements may be appropriate.

s compare

Purpose: This function plots two seismic data sets, one on top of the other to allow comparison.
An example is shown in Figure 2.5. The function has numerous parameters to control all aspects of
the plotting of the two functions (which do not need to have the same start or end times or sample
interval).

s convert

Purpose: This function converts a matrix into a minimal seismic data structure. An example is

seismic=s convert(randn(201,20),0,4)

which converts a 200 by 20 matrix of random, normally distributed noise into a 20-trace seismic
data set with start time 0 and 4 ms sample interval. The result is the following seismic structure

seismic =
type: ’seismic’

tag: ’unspecified’

name: ’’

first: 0

step: 4

last: 800

traces: [200x20 double]

units: ’ms’

history: {‘29-Aug-2001 21:15:41 ’ [2036] ’S CONVERT’ []}

2.5. DESCRIPTION OF SELECTED FUNCTIONS FOR SEISMIC DATA ANALYSIS 21

Since no content has been specified for the history field it is set by default. The same is true for
the fields units, tag, and name.

s convolve

Purpose: seisout = s convolve(seisin1,seisin2) convolves the two seismic data sets and
outputs the result. There are optional input arguments that allow specification of various aspects
of the operation. The two seismic data sets must satisfy the following restrictions: either both data
sets have the same number of traces (in this case corresponding traces of the two data sets are
convolved) or at least one of the data sets must consist of one trace only (in this case it is convolved
with all the traces of the other data set. As a result the number of traces in seisout is equal to
the number of traces of the larger input data set (in terms of traces). Consequently, the headers of
this larger data set are passed on to the output data set. If both data sets have the same number
of traces the headers of the first data sets are copied to the output data set. This behavior can be
changed by use of the keyword header

• {‘header’,numerical parameter} Select input data set to supply the headers for seisout.
Possible values are 1 and 2. Default is 1.

If one of the data sets consists of one trace and the other has more than one trace the headers of
the larger data sets are copied to the output data set.

s correlate

Purpose: seisout = s correlate(seisin1,seisin2) performs a crosscorrelation of the traces
of the two seismic data sets and outputs the result. Arguments args are optional and allow spec-
ification of various aspects of the operation. The default is that each trace of the second data set
is correlated with each trace of the first data set. The output data set has two headers (default:
‘seis1’ and ‘seis2’) which, for each output trace indicate which input trace of the first and of the
second data set was used for its calculation.

Alternatively, each trace of the second data set can be correlated with the corresponding trace of
the first data set. In this latter case the two seismic data sets must have the same number of traces.
As a result the number of traces in seisout is equal to the number of traces of the input data sets
(in terms of traces). The headers of the first input data set are passed on to the output data set.

s cplot

Purpose: This function plots seismic data in form of color-coded pixels (intended for larger data
sets). The simplest form is

s cplot(seismic)

22 CHAPTER 2. SEISMIC DATA

which plots the seismic structure seismic using default settings. To allow more general use the
function does not abort if seismic is not a seismic structure, but rather a matrix. In this case the
matrix columns are plotted as seismic traces and the vertical axis is annotated as ”Samples”.

There are numerous parameters — ranging from plot direction to color scheme — that can be set.
An example is

s cplot(seismic,{‘limits’,-8000,8000},{‘direction’,‘r2l’}), ...

{‘annotation’,‘cdp’},{‘colormap’,‘hot’})

where the seismic-sample values in the interval from -8000 to 8000 are represented by colors. The
plot direction is from left to right and the horizontal axis is annotated by CDP (the header CDP
must, of course, be present in the seismic data set seismic. Furthermore, the color map hot

predefined by MATLAB, has been chosen.

Color plot and wiggle trace plot can be overlaid. For example,

s cplot(seismic,{‘title’,‘Wiggle trace overlay over color plot’})
s wplot(seismic,{‘title’,‘’},{‘figure’,‘old’})

creates the plot shown in Figure 2.6. Of course, the two data sets can be different — say interval
velocity and seismic (the “c” in s cplot stands for color, the “w” in s wplot denotes wiggle;
there is also a function s plot that plots many-trace data sets in color and those with fewer traces
(usually fewer than 102) as wiggle traces. Function s cplot has four additional menu buttons. In

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

30−Jun−2001 14:53:40Manual_1

Trace number

T
im

e
(m

s)

Wiggle trace overlay over color plot

0 2 4 6 8 10 12

0

50

100

150

200

Figure 2.6: Wiggle trace plot on top of color plot of the same seismic data.

2.5. DESCRIPTION OF SELECTED FUNCTIONS FOR SEISMIC DATA ANALYSIS 23

Matlab versions 7 and above these buttons have blue labels. Due to a bug in Matlab the button
labels are black for Matlab versions 6.5.2 and earlier.

Save plot Attached to this button is a drop-down menu with three choices to save the figure.
The top one saves the figure as an EMF file specifically for use in PowerPoint displays (EMF files
can be edited in PowerPoint). The directory to which this file is saved can be specified in field
pp directory of global structure S4M (see Section 4.1 on pages 53 ff). The second choice is the
JPEG format because of its universal use, and the third choice, finally, saves the figure as an
encapsulated Postscript (EPS) file, specifically for use in LATEXdocuments. The directory to which
EPS files are saved is specified in field eps directory of global structure S4M.

Add scrollbars When pressed for the first time this button creates scroll bars along the right-
hand side and along the bottom of the figure. The size of the scroll window needs to be selected
by the user. While the scroll bars are present the normal zoom function is unavailable. Clicking
the button again will remove the scroll bars. The scroll bars can be turned on and off repeatedly.

Tracking is off Cursor tracking refers to a feature where the current position of the cursor as
well as the seismic amplitude at the cursor location is displayed in the lower left corner of the
figure. This button toggles cursor tracking on and off. While cursor tracking is on the normal
zoom function is unavailable.

The above three menu buttons are also available for wiggle plots (s wplot).

Modify display Attached to this button is a drop-down menu with a number of fairly self-
explanatory choices. The option “Image limits ...” is meant to allow a user to specify what
seismic amplitudes represent the end colors of the color bar. This last option is only available for
color plots.

s create qfilter

Purpose: This function creates constant-Q absorption filters. For a range of t and Q values these
filters have an amplitude spectrum

A(f) = exp
(
−πft

Q

)

and a phase spectrum that ensures that they are causal.

s create wavelet

Purpose: This function computes a Ricker wavelet or a wavelet with trapezoidal amplitude spec-
trum. In the latter case the phase options are minimum-phase, zero-phase,and maximum-phase.
An example is

wav=s create wavelet({‘type’,‘min-phase’},{‘frequencies’,10,10,40,60}, ...

{‘step’,2})

24 CHAPTER 2. SEISMIC DATA

which creates a minimum-phase wavelet with 2 ms sample interval.

s filter

Purpose: This function filters a seismic data set using an Ormsby band-pass filter (trapezoidal
amplitude spectrum).

s header

Purpose: This function displays or manipulates trace headers of a seismic structure. It can be
used to add, replace or delete trace headers (mnemonics, descriptions, and values). The simplest
use is
s header(seismic);

which prints to screen the name of every trace header together with its minimum value, maximum
value, minimum and maximum trace-to-trace increment, units of measurement and description.
The general usage of the function is:
seismic = s header(seismic,action,mnem,values,units,description)

The second argument, action, specifies the action taken by the function. Possible values of action
are:

• add Add header with mnemonicmnem to seismic data set. . Error if it already exists.

• add ne Add header with mnemonicmnem to seismic data set. Replaces it if it already exists.

• replace Replaces header with mnemonicmnem in seismic data set. Error if it already exists.

• delete Delete header with mnemonic(s) mnem in seismic data set. Error if it header does
(headers do) not exist.

• delete ne Delete header(s) with mnemonic(s) mnem in seismic data set. No error if it one
or more header does (headers do) not exist.

• keep Keep header(s) with mnemonic(s) mnem in seismic data set. Delete all others. Error if
it one or more headers do not exist.

• keep ne Keep header(s) with mnemonic(s) mnem in seismic data set. Delete all others. No
error if it one or more header does (headers do) not exist.

• rename Rename header mnemonic, keep everything else the same

• list Print short list: for specified header mnemonic(s) it lists minimum and maximum value,
smallest and greatest trace-to-trace change, units of measurement, and header description.
This is the default that is being used if the seismic dataset is the only input argument.

2.5. DESCRIPTION OF SELECTED FUNCTIONS FOR SEISMIC DATA ANALYSIS 25

s header math

Purpose: This function manipulates trace headers of a seismic structure. It can be used to add or
replace trace headers by arithmetic manipulation of existing headers. As usual the pseudo-header
“trace no” is implied. An example of its use is:

seismic = s header math(seismic,‘add’,‘offset=sqrt((sou x-rec x)̂2 + ...

(sou y-rec y)̂2)’,‘m’,‘Source-receiver offset’)

which computes a new header, offset, from the source and receiver coordinates. These coordinates
must, of course be headers of data set seismic.

s history

Purpose: This function manipulates the processing history as stored in the field history. The
simplest use is s history(seismic) which prints to screen the contents of the history field of
dataset seismic.

s header plot

Purpose: This function plots one or more header values or cross-plots header values. An example
is Figure 2.4 on page 9.

s header sort

Purpose: This function sorts seismic header value(s) and outputs an index vector (sorting can be
performed in increasing or decreasing order). This index vector can be used to sort seismic traces
by header values.

Assume the traces of dataset wavelets are wavelets estimated for a number of traces and/or time
intervals and that the correlation coefficient is stored in header cc coefficient. The following
code segment will find and plot the five wavelets with the highest correlation coefficient.

index=s header sort(wavelets,{‘headers’,‘cc coefficient’}, ...

{‘sortdir’,‘decreasing’});
bestwavelets=s select(wavelets,{‘traces’,index(1:5)});
s wplot(bestwavelets)

s ispectrum

Purpose: Interactive spectrum computation. This function allows a user to pick one or more
rectangular windows on a seismic display after pressing the menu button labeled “Pick windows”.
Windows are picked by pressing the left mouse button at one corner of the window and releasing

26 CHAPTER 2. SEISMIC DATA

it at the opposite corner. A spectrum window will immediately display the average amplitude
spectrum in the picked seismic window. The process can be repeated. Each window on the seismic
display has a different border color and the same color is used to represent its spectrum. A window
can be deleted by pressing the right mouse button anywhere on its border. When a window in
the seismic figure is deleted the corresponding spectrum curve on the spectrum plot is deleted as
well. To end window picking click on the same menu button again (its label has changed to “Done
picking windows”). These instructions are also provided in a pop-up window if the “Need help?”
menu button is clicked.

Upon exiting the function a legend is written to the spectrum window which includes traces and
time range used for each spectral curve.

The spectrum display is protected from being deleted as long as the associated seismic window
exists or as long as the “Done picking windows” button has not been pressed.

The simplest use of this function is

s ispectrum(seismic)

If the data set has more than 101 traces (default setting of S4M.ntr wiggle2color; see the
description of presets on page 53 ff.) the seismic traces are displayed in form of a color plot,
otherwise they are displayed in wiggle format.

b s ispectrum(seismic)

An example is shown in Figures 2.7 and 2.8.

The function has a number of keyword-controlled parameter options. For example

s ispectrum(seismic,{‘plottype’,‘wiggle’},{‘annotation’,‘cdp’}, ...

{‘frequencies’,0,80})

specifies that the seismic plot should be wiggle-trace even if there are more traces than specified
in S4M.ntr wiggle2color, trace annotation should be in CDP number, and the frequency axis
of the spectrum plot should range from 0 to 80 Hz. Other parameters can be found by using the
help s ispectrum command

s principal components

Purpose: This function computes principal components of the input data set. Let sj(t) denote J

seismic traces. Then the first principal component is the function s(t) which minimizes

J∑

j=1

[sj(t)− ajs(j)]2

with appropriately chosen scale factors aj (the function s(t) is usually normalized to unit energy).
The first principal component s(t) can be regarded as the single seismic trace that “best represents”

2.5. DESCRIPTION OF SELECTED FUNCTIONS FOR SEISMIC DATA ANALYSIS 27

26−Dec−2005 15:27:15Manual_i_spectrum

Trace number
T

im
e

(m
s)

Seismic data

200 400 600 800 1000 1200

500

1000

1500

2000

2500

3000

−8

−6

−4

−2

0

2

4

6

8

x 10
8

Figure 2.7: Seismic display created by s ispectrum with three windows; the associated spectra
are shown in the next figure.

26−Dec−2005 15:27:15Manual_i_spectrum

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (Hz)

A
m

pl
itu

de
 (

lin
ea

r)

Amplitude spectra of selected windows of seismic data set

trace_no: 12−205; time: 572−1392 ms
trace_no: 326−877; time: 1216−2544 ms
trace_no: 686−1207; time: 1320−2784 ms

Figure 2.8: Spectra of the seismic data in the three windows shown on the seismic display above
(created by s ispectrum).

28 CHAPTER 2. SEISMIC DATA

the J different seismic traces sj(t). It is easy to show that the first principal component is nothing
but a weighted stack of all the seismic traces (the weights may turn out be positive or negative).

The function s principal components either creates a new data set consisting of one or more
of the principal components of the input data set or it creates a data set where each of the input
traces is represented by the one or more of the principal components. An example, with all the
default parameters, is

pcs=s principal components(seismic);

The output data set pcs has as many traces as the input data set but each trace is a scaled version
of the first principal component of the traces of data set seismic, i.e. the j-th trace of the output
data set is ajs(j) where aj is the scale factor in the equation above and s(t) is the first principal
component. The statement

pcs=s principal components(seismic,{‘components’,1:5});

creates a data set pcs where each trace is an approximation of the corresponding trace of the input
dataset by means of the first 5 principal components (this assumes that the data set seismic has
at least 5 traces). Obviously, there are as many output traces as there are input traces.

Assume the seismic data set seismic consists of 7 traces.

seis1 4=s principal components(seismic,{‘components’,1:4});
seis5 7=s principal components(seismic,{‘components’,5:7});
error=max(seismic.traces-(seis1 4.traces+seis5 7.traces))

Then the traces of seis1 4 (the seismic data represented by the first 4 principal components)
added to the traces of seis5 7 (the seismic data represented by the last 3 principal components)
produce the traces of the original input data. In theory the 7-component vector error should be
zero. In practice, due to rounding errors, its elements are generally non-zero but very small.

On the other hand, if the principal components are requested,

pcs=s principal components(seismic,{‘output’,‘pc});

produces a seismic data set with only one trace, the first principal component s(t) as defined above
— regardless of the number of input traces.

pcs=s principal components(seismic,{‘output’,‘pc},{‘components’,2:5});

creates an output data set whose 4 traces are the second to fifth principal component.

s phase rotation

Purpose: Rotate phase of each trace of the input data set by a user-specified amount. A simple
example is

2.5. DESCRIPTION OF SELECTED FUNCTIONS FOR SEISMIC DATA ANALYSIS 29

wavelet90 = s phase rotation(wavelet,90)

The output data set consists of all the traces of the input data rotated by 90 degrees (for a cosine
a phase rotation by 90 degrees means conversion to -sine signal).

It is possible to specify more than one phase. Assume wavelet is a one-trace data set. Then

wavelets = s phase rotation(wavelet,[0:15:90])

creates a seven-trace data sets whose first trace is equal to the input trace. In general, the n-th
trace is shifted by 15(n− 1) degrees with respect to the input trace. All headers of the input data
set are preserved. In addition, the phase is added to the headers of wavelets.

If the input data set has more than one trace there are two options for the output data set. It can
be a structure array where each element is a seismic structure and contains the input data shifted
by one of the angles specified. An example is

wavelets array=s phase rotation(wavelets,[15:15:90],{‘output’,‘array’})
s wplot(wavelets array(3))

where the output is a 6-element structure array whose third element (the input data shifted by
45 degrees) is displayed in form of a wiggle plot. If no output form is specified or if {‘output’,
‘standard’} the output data set is a normal seismic structure. The number of traces is equal to
the product of input traces and number of phase angles specified. For each trace the phase angle
is stored in a header whose default mnemonic is ‘phase’. The sequence is as follows: input traces
rotated by the first phase angle, input traces rotated by the second phase angle, The following
code fragment shows how one can extract all rotations of a particular trace (in this example trace
5):

% Create a header with trace numbers

wavelets = s header(wavelets,‘add’,‘trace number’, ...

1:size(wavelets.traces,2),‘n/a’,‘Trace number’)

% Apply phase rotation

rotated wavelets=s phase rotation(wavelets,[15:15:90],{‘output’,‘array’})
% Select all traces with trace number 3

wavelet5 = s select(rotated wavelets,{‘traces’,‘trace number == 5’}))

Then, using s header sort, one can resort the traces in any desired way.

s reflcoeff

Purpose: This function computes reflection coefficients from a seismic data structure representing
impedance.

30 CHAPTER 2. SEISMIC DATA

s resample

Purpose: This function samples a seismic data set to a new sample interval which can be greater
or smaller than the sample interval of the input data.

The wavelet option prepends and appends a zero to the traces of the input data set prior to
interpolation and then removes it again before returning the interpolation result.

s rm trace nulls

Purpose: This function removes common null values (NaN’s) at the beginning/end of traces and
replace other null values with zeros. Such null values are usually introduced if datasets with different
start time and/or end time are concatenated (see s append) or if traces of a dataset are shifted by
different amounts (s shift)..

s select

Purpose: This function outputs a subset of a seismic dataset by specifying a time range and/or
a trace range. The most frequently used keywords are times and traces. The former is used to
select a time range. For example,

s select(seismic,{‘times’,1000,2000})

selects all samples of the seismic data set seismic within the time range from 1000 to 2000 ms.

s select(seismic,{‘times’,seismic.first:2*seismic.step:seismic.last})

outputs every other sample of the seismic data set seismic. If the start time selected is less than
the start time (and/or the end time selected is greater than the end time) of the seismic input data
then null values are output for those times for which no input data are available. The null value
can be chosen with the keyword . The default is {‘null’,0}.
Traces cane be selected by trace number, individual header values, or by means of a logical expres-
sion. For example, the first example above can be expanded to only read the first 10 traces:

s select(seismic,{‘times’,1000,2000},{‘traces’,1:10})

An equivalent formulation is

s select(seismic,{‘times’,1000,2000},{‘traces’,‘trace no’,1:10})

In this case the “pseudo-header” trace no, which represents trace numbers, is used to specify the
traces to output. Of course, any header of the data set seismic can be used to specify traces. The
command

s select(seismic,{‘traces’,‘cdp’,1000:1010})

2.5. DESCRIPTION OF SELECTED FUNCTIONS FOR SEISMIC DATA ANALYSIS 31

selects traces by CDP-number. The same selection can be achieved by means of a logical expression:

s select(seismic,{‘traces’,‘cdp >= 1000 & cdp <= 1010’})

Likewise, the two commands

s select(seismic,{‘traces’,‘cdp’,1000:inf})

and

s select(seismic,{‘traces’,‘cdp >= 1000’})

produce the same output. The former command shows that requests for traces that are not in the
input data are ignored (this differs from the way a time range is selected).

In general, a logical expression for trace selection provides more flexibility in that multiple headers
can be used. The command

s select(seismic,{‘traces’,‘iline no>1000 & iline no<=1100 & xline no==2000’})

outputs all in-lines with in-line numbers from 1001 to 1100 for cross-line 2000. The logical expression
may contain MATLAB functions such as fix, round, ceil, mod. Thus

s select(seismic,{‘traces’,‘cdp >= 1000 & mod(cdp,2) == 0’})

outputs all traces with even CDP number not less than 1000.

s shift

Purpose: This function applies time shifts to individual traces of a seismic data set.

s spectrum

Purpose: This function plots amplitude and/or phase spectra of one or more seismic data sets.

s stack

Purpose: This function stacks seismic traces. It a header mnemonic is specified, traces with the
same value of that header are stacked; otherwise all traces of the input data set are stacked. Thus

stack = s stack(seismic)

stacks all traces in seismic into one single trace while the more elaborate example

32 CHAPTER 2. SEISMIC DATA

[stack,multiplicity] = s stack(seismic,{‘header’,‘CDP’});

stacks all traces of seismic with the same CDP number. The number of output traces is
thus equal to the number of different CDP’s in seismic. The optional second output argu-
ment multiplicity is a seismic structure identical to stack, except that a sample of the field
traces represents the number of samples that were stacked to compute the corresponding sample
of seismic. This is only relevant if not all CDs have the same number of traces or if at least some
traces have null values.

s tools

Purpose: This function writes one-line description for seismic function (in alphabetic order). The
simplest call is

s tools

which displays this description for all functions. The output can be restricted by adding a search
string. For example,

s tools create

will show all functions that create seismic data sets;

s tools seg

will show all functions that deal with SEG-Y data sets. The search is not case-sensitive.

s wiener filter

Purpose: This function computes one or more Wiener filters to convert one seismic data set into
another.

s wplot

Purpose: This function plots a seismic data set in wiggle trace format. The simplest form is

s wplot(seismic)

which plots the seismic structure seismic. The vertical axis is annotated in time, the horizontal
axis in trace number. To allow more general use the function does not abort if seismic is not
a seismic structure, but rather a matrix. In this case the matrix columns are plotted as seismic
traces and the vertical axis is annotated as ”Samples”.

A large number of keyword-activated options allows control of many aspects of the plot. More
commonly used keywords are:

2.5. DESCRIPTION OF SELECTED FUNCTIONS FOR SEISMIC DATA ANALYSIS 33

• {‘annotation’,string parameter} Specifies a header mnemonic for the annotation of
the horizontal axis. Default is the trace number ‘trace no’.

• {‘deflection’,numerical parameter} Amount of trace deflection. Default is 1.5.

• {‘direction’,string parameter} Possible values are ‘l2r’ and ‘r2l’. Default is
‘l2r’.

• {‘interpol’,string parameter} Interpolation to create smooth plot. Options are ‘cubic’,
‘v5cubic’, and ‘linear’. Default is ‘v5cubic’.

• {‘orient’,string parameter}Orientation of plot. Options are ‘landscape’ and ‘portrait’.
Default is ‘portrait’ for ten or fewer traces and landscape for more than ten traces.

• {‘peak fill’,string parameter} Color of peak fill. Any MATLAB color is allowed.
Default is ‘k’ (black). An empty string parameter means no fill.

• {‘scale’,string parameter} Scaling of the data prior to plotting. Options are ‘yes’

(scale individual traces) and ‘no’ (do not scale individual traces; this preserves relative
amplitudes). Default is ‘yes’.

• {‘trough fill’,string parameter} Color of trough fill. Any MATLAB color is allowed.
Default is the empty string implying no fill.

• {‘wiggle’,string parameter} Color of wiggle. Any MATLAB color is allowed. Default
is ‘k’ (black). An empty string parameter means no wiggle.

Examples of seismic plots are, for example, in Figures 2.1 and 2.2. Seismic traces can also be
plotted in different colors. This is illustrated in Figure 2.9

The code that generated Figure 2.9 is shown below. It creates two copies, seismic1 and seismic2,
of the original seismic data. Traces 3, 5, and 10 of seismic1 are set to null values (NaN) and thus
will not be plotted. In seismic2 all traces except 3, 5, and 10 are set to null values. Then the two
data sets are plotted with seismic2 plotted in the same figure window as seismic1 (argument
{‘figure’,‘old’}).

seismic=s data;

ntr=size(seismic.traces,2);

bool=ones(1,ntr);

bool([3,5,10])=0;
seismic1=seismic;

seismic2=seismic;

seismic1.traces(:,find(∼bool))=NaN;
seismic2.traces(:,find(bool))=NaN;

s wplot(seismic1,{‘deflection’,0.9},{‘orient’,‘landscape’});
s wplot(seismic2,{‘deflection’,0.9},{‘figure’,‘old’}, ...

{‘peak fill’,‘r’},{‘wiggle’,‘r’})

34 CHAPTER 2. SEISMIC DATA

27−Nov−2004 22:16:45Colored_traces

0 2 4 6 8 10 12
0

100

200

300

400

500

600

700

800

900

1000

Trace number
T

im
e

(m
s)

Test data

Figure 2.9: Plot of seismic traces in different colors.

show segy header

Purpose: This function reads a disk file written in SEG-Y format and outputs the EBCDIC header
(converted to ASCII) to a file or prints it to the screen.

write segy file

Purpose: This function writes a seismic structure to a disk file in SEG-Y format.

Chapter 3

WELL LOGS

3.1 A brief look at some functions for well log curves

The Log ASCII Standard (LAS) developed by the Canadian Well Logging Society represents the
most popular ASCII file format for the exchange of well log data. In complete analogy to the
seismic case discussed earlier there is a function

show las header

In principle, this function can have an input argument, the name of an LAS file and an output
variable to receive the header. If no file name is given or if the filename provided is invalid a file
selection box pops up and allows interactive file selection. The file selection function remembers
the directory from which the file was read and, on a subsequent request for a LAS file will go to
this directory right away. If no output variable is specified the header is displayed on the screen.

The two statements

wlog = read las file;

l plot(wlog)

read an LAS file and display all curves in a figure window (batch mode). In the interactive mode
(see description of presets on pages 53 ff.) a listbox with the curve mnemonics is displayed to
allow interactive selection of the curves that should be plotted.

The function read las file can take two arguments. The first is the name of the LAS file to be
read, the second is a print switch which allows one to keep track of the reading process. If a file
name is not provided or if the file name is invalid a file selection window opens to allow interactive
file selection. The well curves and ancillary data from the LAS file are stored in the log structure
wlog which is then input to the function l plot (most well-log-related functions start with “l ”).
Figure 3.1 is an example of such a plot. Since no title was provided the plot title is taken from
wlog.name, by default the name of the LAS file. The function l plot has a number of options
which can be found in the standard way by typing

35

36 CHAPTER 3. WELL LOGS

0 0.2 0.4
2700

2800

2900

3000

3100

3200

3300

3400

3500

3600

3700

PRROCK

na

de
pt

h
(m

)

0 50 100

CLAY

%

0 500010000

VSROCK

ft/s

0 50 100

SATNBRINE

%

0 50

PHI

%

0 1 2

x 10
4

VPROCK

ft/s

2000−12−25 (15:3:17)Manual_1

WELL #1

1 2 3
2700

2800

2900

3000

3100

3200

3300

3400

3500

3600

3700

RROCK

g/cm3

de
pt

h
(m

)

Figure 3.1: Plot of all traces of log structure logout.

help l plot

Presently there are some 70 utility-type functions that deal with log structures.1 One way to find
out what is available is to run

l tools

which prints one-line descriptions of all functions that deal with log structures. To make the list
more specific a keyword may be added. For example

l tools las

lists not only those functions that deal with LAS files (the search is not case sensitive) but also
other functions that have the character group “las” as part of their description (the description of
l elastic impedance does not fit onto one line of this manual and, hence, as been broken into
two) .

l elastic impedance Compute ‘‘elastic impedance’’ for user-defined

angles of incidence

read las file Read disk file in LAS 2.0 format

show las header Output/display header of LAS 2.0 file

write las file Write disk file in LAS 2.0 format

1Only a subset of the available log-related functions is included in the public-domain version.

3.1. A BRIEF LOOK AT SOME FUNCTIONS FOR WELL LOG CURVES 37

In a LAS file each log curve is associated with at least three pieces of information: a mnemonic,
units of measurement, and a description. Examples of mnemonics are “DT”, “DTCO”, or “BHC”
for sonic interval transit time, “RHOB” for bulk density, etc.; examples of units of measurement
are “us/ft” meaning µs/ft, or “g/cm3”, meaning g/cm3. Curve mnemonics are frequently chosen
to provide some idea of how the curve has been measured/computed and hence may vary from
one logging company or log analyst to the next. There is also a tremendous variation in the way
units are denoted. When writing a LAS file one commercial program, for example, denotes feet by
“F” which lead another commercial program, while converting non-metric units to MKS, to output
depth in Kelvin, as it obviously interpreted “F” as Fahrenheit.

The function read las file leaves header mnemonics as they are in the LAS file (the only excep-
tion is “DEPT” which is converted to “DEPTH”). However, units of measurements are converted
to a standard form (for example, LAS file writers have come up with at least 6 different ways to
say “g/cm3”) — at least for those curves that are most relevant for someone dealing with seismic
data. Of course, misinterpretations are possible; however, “F” would be interpreted as “feet” and
converted to “ft” (and not assumed to represent Fahrenheit). This conversion is performed in
function unit substitution which contains the list of what is converted into what.

To simplify their use many functions assume standard mnemonics for curves. These standard
mnemonics are defined in function systemDefaults in a global structure called CURVES. They are
shown in Tables 1-3 on pages 57 ff.

Thus “acoustic impedance”, for example, has the mnemonic aImp. This list is likely to grow.

Several of the curves (those identifying lithology) are designated as logical. This means that their
values are either 1 (true) or 0 (false). Obviously, curve mnemonics can be changed globally or
locally at any time. The following code fragment illustrates this.

well log = read las file;idlmread las file

well log = l rename(well log,{‘RHOB’,‘rho’},{‘DTCO’,‘DTp’}); 1a

well log = l seismic acoustic(well log);

It reads an LAS file with sonic and density curves, and changes their mnemonics of from “DTCO” to
“DTp” and from “RHOB” to “rho”, respectively. In the last statement the function, l seismic acoustic,
assumes that density and sonic curves use these standard mnemonics, computes compressional ve-
locity curve “Vp” and acoustic impedance “aImp” and adds them to the data set well log.

One of the parameters set in the initialization function presets (see page 53 ff.) is
S4M.case sensitive. If this parameter is set to “false” (0), which is the default, then 1a could
have been written as

well log = l rename(well log,{‘rhob’,‘rho’},{‘dtco’,‘dtp’}); 1b

In fact any combination of upper-case letters and lower-case letters is permissible.

However, a user is not wedded to these standard mnemonics. First of all, they can be changed
in function systemDefaults or by means of function l redefine. Assume it were necessary to
preserve the original mnemonics in the example above. Then one could write

38 CHAPTER 3. WELL LOGS

well log = read las file;

l redefine({‘rho’,‘RHOB’},{‘DTp’,‘DTCO’});
well log = l seismic acoustic(well log);

where l redefine changes the default mnemonics rho and DTp to RHOB and DT, respectively (note
that l redefine has no output argument; it changes fields of the global structure CURVES)

But the standard mnemonics can also be changed on a case-by-case basis. One could write

well log = read las file;

well log = l seismic acoustic(well log,{‘rho’,‘RHOB’},{‘DTp’,‘DTCO’});

The two additional arguments tell l seismic acoustic that the density curve has mnemonic
RHOB (instead of the standard mnemonic rho) and the sonic log has mnemonic DTCO (instead of
the standard mnemonic DTp).

The two curves computed in l seismic acoustic in all the above cases would still have default
mnemonics Vp and aImp. But this could be changed as well. With either

well log = read las file;

l redefine({‘rho’,‘RHOB’},{‘DTp’,‘DTCO’},{‘Vp’,‘Vel’},{‘aImp’,‘IMP’});
well log = l seismic acoustic(well log);

or

well log = read las file;

well log = l seismic acoustic(well log,{‘rho’,‘RHOB’},{‘DTp’,‘DTCO’}, ...

{‘aImp’,‘IMP’},{‘Vp’,‘Vel’});

the mnemonics of acoustic impedance and compressional velocity will be IMP and Vel, respec-
tively. In this last case,which avoids the call to function l redefine, the standard mnemonics
are not changed. Consequently, a subsequently called function that needs, for example, the acous-
tic impedance must be told explicitly what its mnemonic is. Thus the true benefit of standard
mnemonics accrues when a number of functions are to be executed in sequence; there is no need
to tell each of them what curve mnemonics to use. Renaming of curve mnemonics or redefin-
ing of standard curve mnemonics occurs only once — preferably right after reading the LAS file.
Thereafter, the code need not be changed if another log is to be processed in the same way.

3.2 Description of log structures

The log-related functions assume that a log is represented by a structure which — in addition to
the actual log curves represented by a matrix — contains necessary ancillary information in form of
the mnemonics associated with each curve, the units of measurement, and a more understandable
description. Furthermore, there can be parameters such as Kelly bushing elevation, water depth,

3.3. DESCRIPTION OF FUNCTIONS FOR WELL LOG ANALYSIS 39

etc. Basically, a log structure has nine (ten if there are null values) required fields and any number
of optional fields. This description uses the variable ncurves to denote the number of curves in
the well log.

• type General identifier of the type of data set. For a well log it is the string ’well-log’.

• tag This field is used to identify the type of well log — if appropriate. The default tag is
’unspecified’.

• name Name associated with the data set. This could be the well name. When read from a
LAS file it is the file name without .las extension. By default it is used as a plot title.

• first Start of log, (first depth value).

• last End of log, (last depth value).

• step Depth increment (0 if non-uniform).

• units Units of measurement for the depth.

• null No-data (null) value; generally NaN. This field is only present if there are null values.
In LAS files null values are frequently represented by the number -999.25.

• curves A matrix of log curves with ncurves columns; the first column must be DEPTH
and this description always refers to depth with the understanding that it could be something
equivalent such as TWT (two-way time).

• curve info Cell array of dimension ncurves×3. The first column contains the curve
mnemonics, the second column the units of measurement, and the last column a descrip-
tion of each curve. There must be one row for each curve. Obviously, the first row of
curve info pertains to the depth, and so curve info{1,2} must be the same as the field
units described above.

3.3 Description of functions for well log analysis

l check

Purpose: This functions checks a log data structure for formal errors such as inconsistencies,
missing required fields, etc. It takes only one argument, the data set to be checked. An example is

l check(wlog)

which checks for errors of the structure wlog; if indeed errors are found, it will print messages ex-
plaining them. Otherwise, the message No formal errors found in ‘‘wlog’’ will be printed.

It is expected that every log-related function listed in this manual will pass this consistency test;
however, users may modify structures outside of these functions and, if these changes are more
severe, checking if they violate any formal requirements may be appropriate.

40 CHAPTER 3. WELL LOGS

l checkshot

Purpose: This function applies check shot corrections to sonic log; computes depth-time relation-
ship

l compare

Purpose: Compare two or more log curves. The function plots one or more log curves from one
or more wells into one figure window. A simple example is

l compare({log1,‘Vp’},{log1,‘Vs’})

which plots compressional velocity and shear velocity of log structure log1. Of course the curves
need not come from the same log structure.

l compare({log1,‘Vp’},{log2,‘Vp pred’})

compares a measured velocity curve of log1 with a predicted velocity curve from log2. If depth
units or units of measurement of the curves differ they are automatically converted to those of the
first log. There are a number of parameters that can be set. The following function call

l compare({log1,‘DT’,{‘color’,‘r’},{‘linewidth’,2},{‘legend’,‘Sonic log’}},...
{log2,‘DTCO’,{‘color’,‘g’},{‘linewidth’,2},{‘legend’,‘Sonic log’}})

plots the first curve in red with a line width of 2 points and the second curve in green with the
same line width.

l convert

Purpose: This function converts a matrix of curve values, curve names, curve units of measure-
ment, curve description, etc. into a well log structure. An example is

wlog=l convert(columns,‘depth’,‘ft’,‘Depth’; ...

’DTp’,‘us/ft’,‘Sonic’; ...

’VpVs’,‘n/a’,‘Vp-Vs ratio’; ...

’rho’,‘g/cm3’,‘Density’; ...

’epsilon’,‘n/a’,‘epsilon’; ...

’delta’,‘n/a’,‘delta’);

which converts the six-column matrix columns into a log structure with six curves with the
mnemonics depth, DTp, VpVs, rho, epsilon, and delta. The first column of matrix columns,
representing the depth, must be strictly monotonic.

3.3. DESCRIPTION OF FUNCTIONS FOR WELL LOG ANALYSIS 41

04−Aug−2001 14:50:27Manual_crossplot

2000 2500 3000 3500 4000 4500 5000
2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6
wlog_test

P−velocity (m/s)

D
en

si
ty

 (
g/

cm
3)

Shale
Sand

Figure 3.2: Cross-plot of velocity and density for two lithologies: sand (yellow diamonds) and shale
(gray dots); created by two calls to l crossplot

l crossplot

Purpose: This function makes cross-plots of log curves. A simple example, is

l crossplot(wlog,‘Vp’,‘rho’)

which creates a plot in which the horizontal axis is velocity and the vertical axis the density
(assuming curves Vp and rho are present in the log structure wlog). A plot like this could also
be generated with modest additional effort with standard MATLAB tools. The function is more
useful for more elaborate plots; an example is shown in Figure 3.2; it has been generated by

l crossplot(wlog test,‘Vp’,‘rho’,{‘depths’,3000,3500}, ...

{‘rows’,‘shale & rho > 2.1 & Vp < 5000’}, ...

{‘color’,[0.6, 0.6, 0.6]},{‘marker’,‘.’})
l crossplot(wlog test,‘Vp’,‘rho’,{‘depths’,3000,3500}, ...

{‘rows’,‘sand & rho > 2.1 & Vp < 5000’}, ...

{‘color’,[1 0.8 0]},{‘marker’,‘d’},{‘figure’,‘old’})
legend(‘Shale’,‘Sand’,4)

Here, log values are restricted to the depth range from 3000 to 3500 m, Furthermore, only depths
are considered for which the density is greater than 2.1 g/cm3 and the velocity is less than 5000
m/s. The first call to l crossplot displays the velocity-density relationship for shales, the second
the one for sands.

42 CHAPTER 3. WELL LOGS

l curve math

Purpose: This function performs arithmetic using curves to append new curves or replace existing
ones. A curve is created through arithmetic operations on existing curves. A simple example is the
computation of the acoustic impedance from a sonic curve and a density curve. The resulting log
structure logout has all the curves of login and, in addition, an impedance curve.

logout = l curve math(login,‘add’,‘aImp=(1.0e6/DTp)*rho’,...

‘ft/sec x g/cm3’,‘Acoustic impedance’)

The first argument is the input log, the second argument defines the operation to perform (add,
add ne, or replace) and the third is an expression in MATLAB syntax. A new curve with
mnemonic aImp is created by dividing 106 by the sonic log (creates velocity) and multiplying the
result by the density log. The last two arguments are the units and the description of the new
curve. In this example it is assumed that the original log has curves with mnemonics DTp and
rho representing a sonic and a density curve and that their units of measurement are µsec/ft and
g/cm3, respectively. The difference between add and add ne is that with the former the function
aborts with an error message if the mnemonic is already in use while it will overwrite it (ne means
“no error”) in the latter case. On the other hand, replace will abort with an error message if the
curve to be replaced does not exist.

Another example is

logout = l curve math(login,‘replace’,‘depth=depth-login.ekb’,

‘m’,‘Depth below sea level’)

which changes the depth column (first curve) from measured depth to depth below sea level (ground
level) by removing the Kelly bushing elevation from the depth (assuming a parameter login.ekb
exists and depth and Kelly bushing elevation are measured in meter). If the first curve (depth) is
changed the fields first, step, and last of logout will reflect this change.

More sophisticated results can be achieved by repeated use of l curve math. The following two
lines of code create a curve of shale velocity with NaN’s wherever there is no shale.

wlog = l curve math(wlog,‘add’,‘Vp shale=Vp’,l gu(wlog,‘Vp’), ...

‘Compressional velocity in shale’)

wlog = l curve math(wlog,‘replace’,‘Vp shale(find(shale == 0)) = NaN’)

The first line simply adds a copy of the velocity curve; the second function then places NaN’s in
this curve wherever the shale-curve is zero (the shale-curve is a logical curve which is 1 (true) when
shale is present and 0 (false) otherwise. Since the second function call replaces an existing curve
the last two arguments (units of measurements and description, respectively) can be omitted.

See also s select.

3.3. DESCRIPTION OF FUNCTIONS FOR WELL LOG ANALYSIS 43

l interpolate

Purpose: This function interpolates null values of all curves specified by an optional list of
mnemonics. The function assumes that null values are represented by NaN’s.

l lithocurves

Purpose: Create “logical” curves to identify lithology. The curve values are 1 (true) if the lithology
is present at a depth value and 0 (false) if it is not. It assumes that the input log has at least the
curves Vclay and computes the following additional curves if they do not exist (by default, the
function aborts with an error message if one of the lithologies to be created already exists; this
behavior can be changed via the keyword action)

sand sh sand shale

based on the (default) condition

sand = vclay < 0.25

sh sand = vclay >= 0.25 & vclay <= 0.35

shale = vclay > 0.35

The cut-offs used above can be changed via keyword ‘clay cutoffs’.

If the input log has, in addition, the curve Sbrine the following additional logical curves are
computed (if they do not exist)

hc sand w sand

Thus sand is split up into wet sand and hydrocarbon sand based on the (default) condition

hc sand = sand & sbrine <= 0.60

w sand = sand & sbrine > 0.60

The water saturation cut-off can be changed via keyword ‘sw cutoff’. The above conditions
assume that the units of Vclay and Sbrine are fractions; they are appropriately modified if one or
both are in percent. Hence, if the default cut-offs are used and at least the Vclay curve is present
then all it takes is

wlog=l lithocurves(wlog)

It should be noted that the same end can be achieved, with somewhat more typing, via

wlog=l curve math(wlog,‘add’,‘sand=vclay < 0.25’,‘logical’,‘Sand’)

wlog=l curve math(wlog,‘add’,‘sh sand=vclay >= 0.25 & vclay < 0.35’, ...

‘logical’,‘Shaley sand’)

wlog=l curve math(wlog,‘add’,‘shale=vclay >= 0.35’,‘logical’,‘Shale’);

Splitting sand into wet and hydrocarbon sand would require two more calls to l curve math.

44 CHAPTER 3. WELL LOGS

l lithoplot

Purpose: Plot log curves with colors and/or markers representing lithology. This requires that
‘logical’ curves representing lithology exist in the log structure. Such curves could, for example, be
created by means of function l lithocurves.

The simplest example is

l lithoplot(wlog)

which uses all the lithology curves in the log structure wlog to plot all the non-lithology curves.
In general, it is preferable to restrict the number of curves and the number of lithologies.

l lithoplot(wlog,{‘curves’,‘Vp’,‘rho’,‘aImp’}, ...

{‘lithos’,‘shale’,‘sh sand’,‘wet sand’,‘gas sand’})

which only plots the P-velocity, density, and acoustic impedance with shale, shaley sand, wet sand,
and gas sand indicated by specific colors and markers. For a number of frequently used lithologies
these colors/markers are predefined (see help l lithoplot for specifics). Shale, for example is
represented by a gray dot (a small symbol because shale is generally quite dominant). It is, of
course possible to change all this. For example, the above example could be expanded to

l lithoplot(wlog,{‘curves’,‘Vp’,‘rho’,‘aImp’}, ...

{‘lithos’,‘shale’,‘sh sand’,‘wet sand’,‘gas sand’}, ...

{‘shale’,‘k’,‘.’},{‘sh sand’,[0.6, 0.6, 0.6],‘.’})

which redefines shales to be represented by black dots and shaley sands by gray dots. This example
also illustrates that colors represented by characters (‘r’ for red, ‘k’ for black, etc.) as well as
the RGB definition of colors can be used. An example of such a lithology plot is shown in Figure
3.3. It was created by

aux=l lithoplot(wlog2,{‘curves’,‘Vp’,‘rho’},{‘depths’,2000,2500}, ...

{‘lithos’,‘shale’,‘wet sand’,‘hc sand’})
set(aux.axis handles(1),‘XDir’,‘reverse’)

Only log values that represent on of the three lithologies shale, wet sand, or hydrocarbon sand
are displayed. Log samples representing, say, shaley sand, limestone, or coal are not plotted.
The function l lithoplot has an optional output argument, the structure aux; it has a field
axis handles that is an array with the handles to all subplot axes. This is used here to reverse
the x-axis of the first subplot to make it conform to standard log-display practice.

l redefine

Purpose: Change one or more default (standard) curve mnemonics. The simplest form is

3.3. DESCRIPTION OF FUNCTIONS FOR WELL LOG ANALYSIS 45

26−Dec−2005 14:35:06Manual_litho_plot

wlog2

80100120140
2000

2050

2100

2150

2200

2250

2300

2350

2400

2450

2500

DTp

µs/ft

D
ep

th
 (

m
)

Shale
Wet sand
Hydrocarbon sand

1.8 2 2.2 2.4 2.6 2.8
2000

2050

2100

2150

2200

2250

2300

2350

2400

2450

2500

rho

g/cm3

D
ep

th
 (

m
)

Shale
Wet sand
Hydrocarbon sand

Figure 3.3: P-velocity and density with lithology (shale, wet sand, hydrocarbon sand indicated by
different colors and markers; created by l lithoplot

46 CHAPTER 3. WELL LOGS

l redefine({‘rho’,‘rhob’})

which changes the default curve mnemonic for the bulk density from rho to rhob. This is an
alternative to changing the curve mnemonics in a log structure to be equal to the default mnemonics
(see l rename). An arbitrary number of default mnemonics can be changed with one l redefine.

l redefine({‘rhob’,‘rho’},{‘DT’,‘DTp’},{‘VCL’,‘Vclay’})

changes default curve mnemonics rho, DTp, Vclay to rhob, DT, Vcl, respectively.

This function changes the values of fields in global structure CURVES (see the description of presets
on pages 53 ff.)

l regression

Purpose: Compute attribute relationships between two or more log curves. A simple example of
its use is

wlog = l regression(wlog,‘vs=x1*vp+1000*x2’)

which computes parameters x1 and x2 so that the shear velocity vs is expressed “as well as
possible” in terms of a linear relationship with the compressional velocity vp. Vs (assuming that
curve mnemonics are not case-sensitive) and Vp must be curve mnemonics for shear velocity and
compressional velocity, respectively. The default meaning of the expression “as well as possible” is
(L1 norm)

|vs − x1vp + 1000x2| = min.

It is also possible to specify the L2 norm.

|vs − x1vp + 1000x2|2 = min).

by means of the keyword norm

wlog = l regression(wlog,‘vs=x1*vp+1000*x2’,{‘norm’,‘L2’})

l regression uses the MATLAB functions fminunc (for unconstrained minimization) and fmincon
(for constrained optimization). These functions require a starting value for each variable, and if
none are provided as arguments (as in the example above) then l regression sets the starting
values of all parameters equal to 1.

In the relationship above the parameter x2 is multiplied by 1000. In theory, this is not necessary.
In practice, any parameter estimation program works best if the unknowns are balanced (for linear
systems this is equivalent to balancing matrix columns). The factor 1000 has been chosen to be in
the order of magnitude of compressional and shear velocities measured in m/s. Hence the default
starting value is not orders of magnitude off.

In general, it is good practice to use constraints to limit the search performed since regression
parameters could easily range from a compaction factor of the order of 10−4 m−1 to several thousand

3.3. DESCRIPTION OF FUNCTIONS FOR WELL LOG ANALYSIS 47

ft/s as in the example above. It is even helpful to tell l regression if one or more parameters
must be non-negative. Bounds on the parameter values are particularly important if parameters
are exponents or part of exponential functions.

In the example above all depth levels in the log structure are used for which there are valid
compressional AND shear velocities. It is possible to restrict these values to a range of depth
and/or use logical constraints. For example

wlog = l regression(wlog,‘vs=x1*vp+1000*x2’,{‘depths’,2000,3000}, ...

{‘rows’,‘sand’})

restricts the samples to sands (for which the values of logical curve sand are equal to 1) in the
depth range from 2000 to 3000 m (assuming the depth units are m). Of course, a logical curve with
mnemonic sand must exist in the log structure wlog (see function l lithocurves). The keywords
rows and depths are those used in l select to extract specific rows from a log structure. The
above statement could also have been written as

wlog = l regression(wlog,‘vs=x1*vp+1000*x2’, ...

{‘rows’,‘sand & depth >= 2000 & depth <= 3000’})

The expression relating shear velocity and compressional velocity used above is linear. It does
not have to be. Any valid MATLAB statement is allowed provided the only variables are curve
mnemonics and up to 9 parameters (x1, x2,, x9) and there is only one variable (mnemonic
of an existing curve) to the left of the equal sign. The parameters can be constrained by specifying
lower and upper bounds. For example

wlog = l regression(wlog,‘vs=x1*vp+1000*x2’,{‘lbounds’,0,-inf})

requires that x1 is non-negative since it has a lower bound 0; x2 is not constrained since its lower
bound is −∞. The keyword ubounds can be used to set upper bounds. If bounds are given they
must be given for all parameters, but inf and -inf are allowed. If bounds are known they should
be given to prevent the algorithm from going astray.

As mentioned before fitting can be done via either the L1-norm or the L2-norm. However, there
is a third option. It is based on the L1-norm but treats positive deviations different from negative
deviations. With, say,

g(x1, x2) = vs − x1vp − 1000x2;

it can be expressed as

f1H(g(x1, x2)) ∗ g(x1, x2)− f2H(−g(x1, x2))g(x1, x2) = min. (3.1)

where H(·) is the Heaviside function

H(x) =

{
1 for x > 0
0 for x < 0

48 CHAPTER 3. WELL LOGS

25−Mar−2001 14:43:36Manual_3L

1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7
2700

2800

2900

3000

3100

3200

3300

3400

3500

3600

3700

g/cm3

D
ep

th
 (

m
)

rho
L1_fit
L2_fit
L1_fit_asym

Figure 3.4: Density log with superimposed trend curves

and f1 and f2 are positive factors. Obviously, expression (3.1) is equivalent to f1|g(x1, x2)| if
f1 = f2. However, if f1 < f2, then positive deviations receive lower weight than negative ones. The
regression will tend to better match the large values. If f1 > f2, the result is the opposite. Figure
3.4, which is the result of the following MATLAB statements illustrates this.

expression = ‘rho=x1*(depth/1000)ˆx2’;

3.3. DESCRIPTION OF FUNCTIONS FOR WELL LOG ANALYSIS 49

[log curves,aux1] = l regression(log curves,expression, ...

{‘norm’,‘L1’},{‘lbounds’,0,0},{‘mnem’,‘L1 fit’}, ...

{‘description’,‘L1 fit to density’});
[log curves,aux2] = l regression(log curves,expression, ...

{‘norm’,‘L2’},{‘lbounds’,0,0},{‘mnem’,‘L2 fit’}, ...

{‘description’,‘L2 fit to density’});
[log curves,aux3] = l regression(log curves,expression, ...

{‘norm’,‘L1’,0.1,1},{‘lbounds’,0,0},{‘mnem’,‘L1 fit asym’}, ...

{‘description’,‘L1 asymm. fit to density’});
l compare({log curves,‘rho’},{log curves,‘L1 fit’,{‘linewidth’,2}}, ...

{log curves,‘L2 fit’,{‘linewidth’,2}}, ...

{log curves,‘L1 fit asym’,{‘linewidth’,2}}, ...

{‘parameters’,{‘lloc’,3}})

L1-norm and L2-norm fits are close together with the latter slightly higher, and the asymmetric fit
is clearly separated from the two.

l rename

Purpose: Change one or more curve mnemonics. The simplest form is

log = l rename(log,{‘rhob’,‘rho’})

which changes the mnemonic RHOB of a density curve (assuming curve mnemonics have been defined
as not case-sensitive; see function presets) to rho, the standard density mnemonic used in SeisLab.
The above statement is equivalent to

log = l curve(log,‘rename’,‘rhob’,‘rho’)

In both statements units of measurement and curve description are not changed. The main differ-
ence between l rename and l curve with the ‘rename’ option is that the former allows renaming
of more than one curve. Thus,

log new = l rename(log,{‘rhob’,‘rho’},{‘dtco’,‘DTp’},{‘VCL’,‘Vclay’})

renames the three curves with mnemonics RHOB, DTCO, and VCL to the standard SeisLab mnemon-
ics. Curve mnemonics are renamed in the order they are listed. Hence,

log new = l rename(log,{‘rho’,‘rho1’},{‘rhob’,‘rho’})

first changes rho to rho1 and then changes rhob to rho.

The function aborts with an error message if a new curve mnemonic is already in use.

A related function is l redefine which changes/redefines one or more default (standard) curve
mnemonics. This is an alternative to changing the curve mnemonics in a log to equal the default
mnemonics.

50 CHAPTER 3. WELL LOGS

l resample

Purpose: This function re-samples the curves of a log to a new, uniform sample interval. This
sample interval can be smaller or larger than the original sample interval of the input data.

l select

Purpose: Select a subset of log curve(s) and/or depth values from a log structure.

A simple example is

new log = s select(wlog,{‘curves’,‘DTp’,‘rho’,‘shale’})

which copies three curves (compressional sonic, density, and a logical curve which is true when a
sample represents shale and false if not) to a new log structure, new log. The function terminates
abnormally with an error message if any one of the three curves is not present in wlog. Of course,
one can also chose a depth range. The following function call is identical to the one above, except
that the three curves in new log are restricted to depths ranging from 3000 to 4000 (the units are
the those used for the depth).

new log=s select(wlog,{‘curves’,‘DTp’,‘rho’,‘shale’},{‘depths’,3000,4000})

There is a third way in which data from a log structure can be selected; the following line of code
shows an example.

new log = s select(wlog,{‘rows’,‘shale == 1’})

In this case new log includes all curves of wlog but only for those depths for which the shale
marker is equal to 1 (i.e. the log curves only for shale).

l plot

Purpose: This function plots log curves. Using all the default settings

l plot(wlog)

plots all the curves in the log structure wlog, each with its own axes. For fewer than 5 curves
the default figure orientation is “portrait”, otherwise it is “landscape”. The string in field name is
plotted as title. An example of the output is shown in Figure 3.1. For log structures with a large
number of curves is it may be more practical to restrict the number of curves plotted. An example
is

l plot(slog,{‘curves’,‘dtp’,‘dts’},{‘depths’,2000,3000})

3.3. DESCRIPTION OF FUNCTIONS FOR WELL LOG ANALYSIS 51

which not only restricts the number of curves plotted to compressional and shear velocity but also
the range of depths (from 2000 to 3000 in whatever depth units the log structure uses). Other
keywords that can be used are ‘figure’ (to specify if a new figure should be created (default) or
if an existing figure should be used), ‘orient’ to specify figure orientation if the default described
above is not appropriate, and ‘color’ to assign a curve color (default is red); all curves are plotted
in the same color.

If one of the curve mnemonics requested via keyword ‘curves’ does not exist in the log structure
a warning message is issued and the corresponding subplot window is empty.

l plot1

Purpose: Like l plot this function plots log curves. However, all log curves are plotted in one
and the same window. If the units of measurement of all plotted curves are the same they are used
to annotate the horizontal axis. If this is not the case, the horizontal axis ia annotated from 0 to
1, and all curves are scaled and shifted in such a way that the smallest value is 0 and the largest
value is 1. The true minimum and maximum values are plotted as part of the legend next to the
curve mnemonic. l plot1 understands all the keywords used by l plot (with the exception that
the plural ‘colors’ is used instead of the singular in l plot). Hence the example above reads

l plot1(slog,{‘curves’,‘dtp’,‘dts’},{‘depths’,2000,3000})

The number of curves plotted cannot exceed the number of colors available. Since there are 7 colors
preset, a maximum of 7 curves can be plotted without increasing the number of colors. If there are
more curves to plot than there are colors available, curves for which there are no colors left will not
be plotted and an alert message will be printed.

Additional keywords, not available in l plot, are ‘linewidth’ and ‘lloc’; they set the line
width of the curves and the location of the legend.

l tools

Purpose: This function writes one-line description for log function (in alphabetic order). The
simplest call is l tools which displays this description for all log functions. The output can be
restricted by adding a search string. For example, l tools create will show all functions that
create log data sets; l tools las will show all functions that deal with LAS files. The search is
not case-sensitive.

l trim

Purpose: This function removes leading and trailing rows from log curves if they contain null
values. Null values bracketed by non-null values are retained. The function assumes that null
values are represented by NaN’s. If this is not the case they are replaced by NaN’s in the output
structure. With the minimum number of input arguments

52 CHAPTER 3. WELL LOGS

wlog=l trim(wlog);

the function l trim removes leading and/or trailing null values that are common to ALL curves
with the exception of the depth (first column of the curve matrix) which must not have null values
at all. This is equivalent to

wlog=l trim(wlog,‘all’);

This is a very benign operation as it does not remove any valid data. Of a more drastic nature is
this function with the option ’any’

wlog=l trim(wlog,‘any’);

which removes leading and/or trailing rows of the matrix of curve values if ANY of the curves
contains a null value. Of course, if one of the curves is very short (say a particular log had been
measured only over a reservoir interval) all other curves are shortened to this interval as well. To
avoid problems with such short curves it is possible to restrict the number of curves for which the
condition is evaluated. For example,

wlog=l trim(wlog,‘any’,{‘DTp’,‘rho’});

removes leading and/or trailing rows of the matrix of curve values if the sonic and/or the density
log have null values. All other curves are disregarded.

As mentioned above, gaps, i. e. null values within log curves (null values preceded and followed
by valid curve values), are likely to be retained. The function l interpolate can be used to
interpolate across such gaps. The function l curve can be used to find out if any of the log curves
have gaps.

read las file

Purpose: This function reads a disk file written in LAS format and outputs a log structure. The
function tries to be lenient and accept files even if they do not quite follow the LAS standard.

show las header

Purpose: This function reads a disk file written in LAS format and outputs the header to a file
or prints it to the screen.

write las file

Purpose: This function writes a log structure to disk in LAS format.

Chapter 4

GENERAL TOPICS

4.1 Initialization Function

presets

Purpose: This function creates four global structures, CURVES, CURVE TYPES, TABLES, and S4M

which are used by many SeisLab functions. The last one, S4M, is of particular importance. Some
fields of this structure are meant to be customized by a user. These fields are set in function
userDefaults. Others fields of S4M that are less likely to need modification and all fields of
CURVES, CURVE TYPES, and TABLES are defined in systemDefaults. Both functions are called
by presets (any field set in systemDefaults can be overridden in userDefaults — or anywhere
else for this matter). Some of the key fields of S4M with their default settings are (logical(1)

means “true” and logical(0) means “false”):

• seismic path — path to the directory with seismic data. SEG-Y files are assumed to have
the file extension “sgy” or “segy”. If a file name is not specified when read segy file or
write segy file is called a file selection window opens. The directory in which it starts is
set by this variable. This may save a number of mouse clicks. Analogous fields exist for log
data (usually extension ”las”), mat files (extension ”mat”), and table files (extension ”tbl”).

• default path — This is a global variable with a path for files with file extensions other
than ‘‘sgy’’, ‘‘segy’’, ‘‘las’’, ‘‘tbl’’, or ‘‘mat’’.

Those defined in systemDefaults are:

• script

Default is ’’; but if the initialization function presets is called from a script this field stores
the name of that script.

• alert = logical(1)

This parameter specifies if, in certain circumstances, messages should be printed to alert the
user to certain situations or results.

53

54 CHAPTER 4. GENERAL TOPICS

• case sensitive = logical(0)

This parameter specifies whether or not seismic header mnemonics and curve mnemonics of
well logs are case-sensitive; i.e. it establishes if ‘CDP’ is the same trace header as ‘cdp’ or
if ‘RHOB’ is the same curve mnemonic as ‘rhob’ or ’Rhob’ (with the default setting they
are).

• compiled = logical(0)

This parameter specifies if one is running a compiled version of SeisLab (compiled versions
of Matlab functions may be somewhat restricted in their functionality; this limitation went
away with Matlab versions 7.x).

• experience=1
Experience level of a user. Three values are supported: Novice: -1; User: 0; Expert: 1.
Mostly used in compiled versions of SeisLab.

• font name = ’Arial’

Name of default font for plots.

• fp format = ’ieee’

Floating point format used when writing data to a SEG-Y file. Default is IEEE with big-
endian byte ordering which is now part of the SEG-Y standard.

• history = logical(1)

The default setting of this field is 1 (true). This means that seismic data sets have a field
history. Each seismic function adds one line to the history field before it outputs the
seismic data. This way every seismic data set has a kind of processing history attached.
Seismic functions add information to the history field of any data set they process (unless
they are too deep down in the calling sequence; this is to avoid cluttering the history field).

• history level = 1

Specifies how deep in the calling sequence a function must be so that it does not write to the
history field even if S4M.history == 1.

• interactive=logical(0)

If interactive is off (logical(0)) a running script or function will not stop with an inter-
active message to request a user action but will perform the default action. An example is
l plot(wlog) which plots the curves of well log wlog. If interactive=logical(1) and if
no curves have been specified in the argument list a listbox requesting selection of the curves
to plot will pop up; however, if interactive=logical(0) then l plot will plot all the
curves without asking the user.

• mymatlab=’C:\MyMatab’
Name of the folder with a user’s Matlab files

• name=’SeisLab’

Name of the package; used in the title pane of figures

4.1. INITIALIZATION FUNCTION 55

• ntr wiggle2color=101

Number of traces for which automatic seismic plotting (e.g. s plot, s ispectrum) switches
from wiggle trace to color (s wplot always plots wiggles and s cplot always makes color
plots.

• plot label

Label for lower left corner of plots; default is S4M.script.

• eps directory=fullfile(’C:\Documents and Settings’, ...

getenv(’USERNAME’),‘My Documents’,‘My Pictures’)

Directory used to store encapsulated PostScript files. These files are intended for use in
LATEXdocuments. They are created by clicking the ”Save plot” figure-menu button and se-
lecting the “EPS” option.

• pp directory=fullfile(’C:\Documents and Settings’, ...

getenv(’USERNAME’),‘My Documents’,‘My Pictures’)

Directory used to store PowerPoint files. These files use the EMF (Enhanced Meta File)
format which convert readily to Microsoft Office drawing objects and can then be edited.
They are created by clicking the ”Save plot” figure-menu button and selecting one of the two
“EMF” options.

• start time

Set to date and time when presets was run.
Executing presets at the beginning of a script is a good idea because it restores the default
values of all global parameters and updates the time information in S4M.start time. Several
plot programs put this time in the lower right corner of the plot. This way all plots generated
with the same script during the same run bear the same “time stamp”.

• matlab version = 7.1

Version of Matlab. Some functions require different code depending on the version of Matlab
used.

• landscape

Default figure position and size of landscape plots on the screen.

• portrait

Default figure position and size of portrait plots on the screen.

• seismic path — path to the directory with seismic data. If a file name is not specified
when read segy file or write segy file is called a file selector window opens. The
directory in which it starts is set by this variable. This may save a number of mouse clicks.
Analogous fields exist for log data (extension ”log”), mat files (extension ”mat”), and table
files (extension ”tbl”).

• log path — path to the directory with well data. If a file name is not specified when
read las file or write las file is called a file selector window opens. The directory
in which it starts is set by this variable.

56 CHAPTER 4. GENERAL TOPICS

• default path — This is a global variable with a path for files with file extensions other
than ‘‘sgy’’, ‘‘las’’, ‘‘tbl’’, or ‘‘mat’’.

The file presets calls functions systemDefaults and userDefaults (if it exists). The latter is
meant to be customized by the user. Function presets should be called prior to using any of the
SeisLab functions.

Hence the first lines of a script might look like this:

clear all

presets

Others global variables are more general and are set in function systemDefaults which is called
by presets.

• CURVES — defines default curve mnemonics for log structures (see Tables 4.2, 4.1, and 4.3)

• CURVE TYPES — defines types of curves (e.g. impedance) of interest for geophysical work..
This is a five-column cell array.

1. type of curve (curve name)

2. possible units of measurements separated by a vertical bar (“|”). Units of measurements
are used for a tentative determination of the curve type (there are obviously different
curves that have the same mnemonics (e.g. clay volume and water saturation or P-
velocity and S-velocity).

3. Mnemonics for curve types; these mnemonics are largely identical with the corresponding
curve mnemonics (see global variable CURVES)

4. Curve description; mostly identical with the curve name

5. Indicator if a curve mnemonic is related to the one in the following row. It is 0 if it is
related and 1 if it is not (this is meant to allow grouping of the curve types).

• TABLES — defines default mnemonics for the columns of tables.

4.1. INITIALIZATION FUNCTION 57

coal Logical for coal

gas sand Logical for gas sand

hc sand Logical for hydrocarbon sand

lime Logical for limestone

oil sand Logical for oil sand

salt Logical for salt

sand Logical for sand

sh sand Logical for shaley sand

shale Logical for shale

wet sand Logical for wet sand

Table 4.1: Default mnemonics for lithologies

aImp Acoustic impedance

aRefl Acoustic reflectivity

BS Bit size

cal Caliper

depth Depth

drho Density correction

DTp Sonic log (Pressure)

DTs Shear log

GR Gamma ray

MD Measured depth

OWT One-way time

Phie Effective porosity

Phit Total porosity

PR Poisson’s ratio

rho Density

Sbrine Brine saturation

Sgas Gas saturation

Shc Hydrocarbon saturation

Soil Oil saturation

TVD True vertical depth

TVDbSD True vertical depth below seismic datum

TWT Two-way time

Vclay Clay volume

Vp Compressional velocity

Vs Shear velocity

Table 4.2: Default mnemonics for log curves

58 CHAPTER 4. GENERAL TOPICS

EP Excess pressure

EPG Excess pressure gradient

FP Fracture pressure

FPG Fracture pressure gradient

OBP Overburden pressure

OBPG Overburden pressure gradient

PP Pore pressure

PPG Pore pressure gradient

Table 4.3: Default mnemonics for pressures

4.2 Input Arguments via a Global Structure

The standard argument list of a function can have positional input parameters and parameters
specified via keywords. An example is

s wplot(seismic,{‘annotation’,‘cdp’},{‘deflection’,1}) 2

which plots the seismic data set seismic in wiggle-trace form with trace deflection 1 and trace
annotation CDP — assuming seismic has a header CDP. The first input argument, seismic, is
a positional parameter; it must be the first parameter in the argument list. The other input
arguments are keyword-specified, optional parameters. These keyword-specified parameters can
also be provided to a function via the global structure PARAMETERS4FUNCTION. Thus statement
2 is equivalent to

global PARAMETERS4FUNCTION

PARAMETERS4FUNCTION.s wplot.default.annotation=’cdp’;

PARAMETERS4FUNCTION.s wplot.default.deflection=1;

s wplot(seismic)

It is important to note that the field default of PARAMETERS4FUNCTION.s wplot is deleted once
it has been read in the subsequent call to function s wplot. Hence it cannot accidentally be used
again. However, a new field, actual, is created. PARAMETERS4FUNCTION.s wplot.actual is
a structure that holds all the keyword-controlled parameters of s wplot used by the last call to
s wplot. Hence, one can re-plot seismic with the same parameters by using the following two
statements, assuming that PARAMETERS4FUNCTION has already been defined as global.

PARAMETERS4FUNCTION.s wplot.default= PARAMETERS4FUNCTION.s wplot.actual;

s wplot(seismic)

For interactive use this approach is a bit cumbersome but it turned out to be quite convenient for
use in functions controlled by a graphic user interface.

Index

absorption filters, 23
alert, 53
arguments, see input arguments

case-sensitive, 37
cursor tracking, 23
CURVE TYPES, see global variables
CURVES, see global variables

EPS files, 55

function overloading, 17

general macros
presets, 2, 6, 7, 10, 12, 37, 46, 49, 53, 55,

56
systemDefaults, 2, 37, 53, 56
time stamp, 10
userDefaults, 2, 53, 56

global variables
CURVES, 37, 38, 46, 53
CURVE TYPES, 53, 56
PARAMETERS4FUNCTION, 58
S4M, 26, 53, 55
TABLES, 53

headers, 9–11, 13, 14, 18, 19
help, see on-line help
history, 54

IBM floating point format, 18
IEEE format, 18
impedance

acoustic, 37, 38
elastic, 36

initialization, 2
input arguments, 3

via global variable, 58

LAS file, 35–38

mnemonics
case-sensitive, 37
curve, 37
standard for curves, 37, 38

on-line help, 2–3
operator overloading, 14–17
overloading, see operator overloading or function

overloading

PARAMETERS4FUNCTION, see global variables
plotting

log curves, 50
seismic data, 32, 33

PowerPoint files, 55
principal components, 26, 28
probability-related macros

p tools, 3
pseudo-header, 12, 25, 30

Q-filter, see absorption filter

required fields
seismic data set, 11
well log, 39

S4M, see global variables
sample data, see test data
scroll bars, 23
SEG-Y file, 14
SEG-Y file, 8, 9, 11–13, 18, 32, 34, 54
seismic headers, see headers
seismic macros

presets, 26
read segy file, 5, 6, 18, 55
s append, 19, 30

59

60 INDEX

s attribute, 19
s check, 20
s compare, 7, 20
s convert, 20
s cplot, 21–23, 55
s create qfilter, 23
s create wavelet, 15, 23
s data, 4
s filter, 7
s gd, 10
s gh, 10
s gu, 10
s header math, 25
s header plot, 9, 25
s header sort, 25, 29
s hesader, 24
s history, 25
s ispectrum, 27, 55
s phase rotation, 28
s plot, 5, 32, 33, 55
s principal components, 26
s select, 25, 30, 31
s shift, 30, 31
s spectrum, 31
s stack, 31
s tools, 3, 8, 18, 32
s wiener filter, 32
s wplot, 3, 6, 22, 23, 25, 55, 58
write segy file, 55

seismic data
comparing, 7
plotting, 6
reading, 5

TABLES, see global variables
test data, 4
time stamp, 55

unit substitution, 37

well log macros
l, plot54
l curve, 49
l elastic impedance, 36

l lithocurves, 47
l lithoplot, 44, 45
l plot1, 51
l plot, 35, 50, 54
l redefine, 37, 38, 44
l rename, 37, 49
l seismic acoustic, 37, 38
l tools, 3, 51
l trim, 51, 52
read las file, 35, 37, 38, 52, 55
write las file, 55

Wiener filter, 32

