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ABSTRACT

Improvements in industrial seismic, seismological, acoustic or interferometric theory and ap-

plications often result in quite subtle changes in sound quality, seismic images or information

which are nevertheless crucial for improved interpretation or experience. When evaluating

new theories and algorithms using synthetic data, an important aspect of related research

is therefore that numerical errors due to wavefield modelling are reduced to a minimum.

We present a new MATLAB code based on the Foldy method that models theoretically

exact direct and scattered parts of a wavefield. Its main advantage lies in the fact that,

while all multiple scattering interactions are taken into account, unlike finite-difference or

finite-element methods, numerical dispersion errors are avoided. The method is therefore

ideal for testing new theory in industrial seismics, seismology, acoustics and in wavefield

interferometry in particular since the latter is particularly sensitive to the dynamics of scat-

tering interactions. We present the theory behind the Foldy acoustic modelling method
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and provide examples of its implementation. We also benchmark the code against a good

finite-difference code. As our Foldy code was written and optimized to test new theory in

seismic interferometry, a number of examples of its application to seismic interferometry

are also presented, showing its validity and importance when exact modelling results are

needed.
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INTRODUCTION

Testing new algorithms in acoustics or exploration and earthquake seismology normally

requires a synthetic dataset to be created in order to assess the validity of the theory on

virtually error-free data. A number of wavefield modelling methods and codes are currently

available, allowing variously for different levels of complexity in the velocity model, and

providing different levels of accuracy in the construction of direct and multiply-scattered

events. Among the most popular modelling techniques, numerical grid-based schemes such

as finite-differences, finite-elements and pseudospectral methods are possibly the most com-

monly used, enabling the user to model realistic signals or seismograms for either acoustic

or elastic wave propagation through media of any desired degree of complexity. These nu-

merical methods use 2- or 3-D grids of points to track the evolution of the wavefield in a

medium by approximating the time and space derivatives of the equations of motion. As

both the medium and the equations are discretised, the accuracy of the results can be im-

proved by decreasing the grid size and increasing the order of derivative approximations, at

the expense of memory usage and computation time. Using coarser grids and lower-order

derivatives reduces that computational burden, but can introduce numerical errors that may

spread throughout any subsequent operation that is performed on the modelled data. In

addition, numerical errors may be introduced by linear interpolation between staggered grid

cells and by the model having finite dimensions and artificial boundaries, which constrain

the size of the velocity grid (and the number of computations required), and which often

produce non-physical reflections off the sides of the model in the absence of absolute energy

absorption methods at the boundaries.

Given that a compromise between accuracy and computational power is always necessary
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in practice, when testing the reliability of any data processing or interpretation algorithm

it may not be possible to assess whether errors in the results are the product of incorrect

theory in the algorithm, or simply arise from the modelling method used. In such cases, a

simple, fast and exact modelling scheme is extremely useful in order to reduce the impact

of modelling errors on the results and eliminate numerical dispersion from the range of

possible causes of errors in the results.

In this article, we present an exact method for acoustic modelling of direct and scattered

wavefields that uses the theory of multiple scattering (or diffraction) developed by Foldy

(1945). Although we do not introduce new scientific concepts herein, we bring together

existing theory to produce a modelling code that is exact and can easily be adapted and

applied when testing new algorithms in acoustics, seismic imaging, seismology and wavefield

interferometry. We give examples of the latter here and in the code package.

The code, written in MATLAB, uses multiple scattering theory to model the acous-

tic wavefield produced by monopole or dipole (spatial derivative) sources as it propagates

through a scattering medium and is recorded by monopole or dipole receivers. Monopole

impulse-responses are calculated in the frequency domain using the analytical Green’s func-

tion formulae from Snieder (2009), with the option of adding a Ricker wavelet to the source.

Dipole (derivative) Green’s functions are also evaluated analytically from the frequency-

domain spatial derivative of the monopole Green’s functions. The Foldy method uses an-

alytic solutions to the wave equation (Green’s functions) to propagate energy through the

non-scattering background medium. As analytic Green’s function formulae exist in vari-

ous numbers of dimensions, the code can easily perform 1-, 2- or 3-D modelling by simply

choosing the appropriate formula (all of these are included). A practical limitation of this

analytical approach is that the Foldy method and code can only model direct and scat-
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tered wavefields in a homogeneous medium of uniform velocity. However, this prevents

any numerical error due to ray tracing from propagating across the dataset and allows the

modelling results to be exact and free from numerical errors (to machine precision).

The scattered part of the wavefield is modelled by including isotropic point-scatterers

(i.e., diffractors that scatter spherically symmetrical waves in the 3D case) in the medium,

and computing all possible interactions between them by using an exact solution to the

infinite scattering series. Although such infinitely small point-scatterers do not exist in

reality, they represent the scattering process while avoiding the introduction of any errors

that would be produced if the diffractors had a finite size and physical properties. They

can also be used to model more continuous structures like reflectors by placing them close

together in a line and, because a relationship exists between wavelength and scatterer cross-

section (Foldy, 1945; Snieder, 1988a,b; Groenenboom and Snieder, 1995), point-scatterers

may be used to approximate real scattering bodies.

Although the Foldy modelling method is not intended to substitute for the more ad-

vanced grid-based modelling schemes for practical applications, it is nevertheless a powerful

tool in the acoustician’s and geophysicist’s arsenals: because it is exact and theoretically

error-free, it can be used safely to assess the validity of data processing, imaging and in-

terferometry algorithms, and thus to detect any errors in the theory, before moving on to

more complicated and realistic cases that require grid-based modelling methods, and real

data tests and applications.

Within this paper, we first describe the theory of multiple scattering as developed by

Foldy (1945). As the code was created to test new theory in seismic interferometry (and

will be useful to others who develop and test interferometry algorithms in future), we then
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give a brief overview of interferometric theory, and illustrate the application of the code

in a number of examples. Finally, we discuss the advantages and limitations of the Foldy

method in comparison with grid-based modelling methods such as finite-differences. The

monopole and dipole Green’s function formulae that are used in the code are provided in

Appendix A.

THE FOLDY METHOD

Consider a source and a receiver respectively located at position xS and xR within a ho-

mogeneous medium containing a distribution of N scatterers. The total wavefield Ψ(xR)

recorded at xR from the source at xS is given by the sum of the direct and scattered wave-

field: while the former can easily be calculated as a Green’s function from the source to the

receiver, the computation of the latter is more complicated as it requires the evaluation of

the direct wavefield to each scatterer, wavefield scattering or diffraction, and all possible

multiple-scattering interactions of that scattered field. Together these provide the total

wavefield radiated by each single scatterer (Figure 1). The total wavefield reaching the

receiver is finally obtained by summing the components of the wavefield radiated by each

scatterer which then propagate to the receiver location.

By assuming the diffractors are limited to isotropic point scatterers we can reduce the

multiple scattering process to a system of linear equations which can be solved numerically

(Foldy, 1945; Groenenboom and Snieder, 1995). In the frequency domain, the total wavefield

Ψ(xR) can be expressed as follows:

Ψ(xR) = Ψ0(xR) +
N∑
i=1

Ψ(x(i))A(i)G(xR,x(i)) . (1)

Here Ψ0(xR) denotes the direct wavefield from xS to xR, Ψ(x(i)) denotes the total wavefield
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(direct and scattered) reaching scatterer (i) located at x(i), A(i) is the scattering amplitude of

scatterer (i), and G(xR,x(i)) is the full Green’s function between scatterer (i) and receiver

xR. Also, when the wavefield emitted by the source at xS is simply a Green’s function

convolved with a source wavelet s(ω), the direct wavefield Ψ0(xR) can be expressed as

Ψ0(xR) = s(ω)G(xR,xS) , (2)

where G(xR,xS) denotes the full Green’s function between source xS and receiver xR.

The scattering amplitude A is a complex number whose real and imaginary components

can be determined from the optical theorem following principles of energy conservation.

Within our code, we assume energy loss within the medium is only due to the scattering

process and ignore the effects of anelastic attenuation. In order to satisfy the requirement

of energy conservation, the real and imaginary parts of A are intimately related, and the

value of the imaginary component must fall within a specific range - a detailed discussion

on this topic is given in Appendix B.

The sum in equation 1 essentially means that any scattered wave arriving at xR must

have come from one of the N scatterers; hence it must have arrived at the scatterer (Ψ(x(i))),

been scattered (amplitude and phase scaled by A(i)), and must then have propagated to

the receiver (G(xR,x(i))). The entire series of multiple scattering interactions is therefore

included intrinsically within term Ψ(x(i)).

By the same reasoning, the total wavefield Ψ(x(i)) reaching scatterer (i) can be expressed

as the sum of the direct and scattered wavefield, where the latter must have been scattered

from any and all of the other scatterers:

Ψ(x(i)) = Ψ0(x(i)) +
N∑
j=1
j 6=i

Ψ(x(j))A(j)G(x(i),x(j)) , (3)
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where Ψ0(x(i)) is the direct wavefield from xS to scatterer (i), Ψ(x(j)) denotes the total

wavefield reaching scatterer (j) located at x(j), A(j) is the scattering amplitude of scatterer

(j), and G(x(i),x(j)) is the full Green’s function between x(j) and x(i).

By swapping the order of terms, expressing the wavefields Ψ(x(i)) and Ψ0(x(i)) as vectors,

and arranging the terms A(j)G(x(i),x(j)) into a square matrix of dimension equal to the

number of scatterers, equation 3 can be re-written as

Ψ0(x(1))

Ψ0(x(2))

. . .

Ψ0(x(N))



= −



−1 A(2)G(x(1),x(2)) . . . A(N)G(x(1),x(N))

A(1)G(x(2),x(1)) −1 . . . A(N)G(x(2),x(N))

. . . . . . . . . . . .

A(1)G(x(N),x(1)) A(2)G(x(N),x(2)) . . . −1





Ψ(x(1))

Ψ(x(2))

. . .

Ψ(x(N))


,

(4)

where the term on the left-hand side is defined to be a vector Ψ0 containing the direct

wavefields from the source at xS to each scatterer, the first term on the right-hand side is

matrix M containing the interaction terms between all scatterers, and the second term on

the right-hand side is vector Ψ containing the total wavefields arriving at each scatterer.

In compact form, this equation thus becomes

Ψ0 = −MΨ , (5)

and since both Ψ0 and M can be calculated using equation 2 and the Green’s function
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formulae in Appendix A, equation 5 can be solved numerically by matrix inversion:

Ψ = −M−1Ψ0 . (6)

Equation 6 gives a vector containing the total field that reaches each scatterer. When

inserted into equation 1, this term can therefore be used to evaluate the total field that

reaches the receiver at xR.

The equations above thus provide an exact representation of the monopole wavefield

through a scattering medium of constant background velocity produced by an impulsive

source at xS and recorded by a receiver at xR, including all orders of interactions between

the scatterers. The only possible sources of inaccuracy in practice are numerical, due to

the finite word storage length of a real number, and any approximation in the matrix

inversion in equation 6. The inverse problem in equation 6 is solved in MATLAB using the

mldivide operation, which seeks a solution by performing a general triangular factorisation

that uses LU decomposition of M with partial pivoting (MathWorks, 2012). If matrix M

is singular, the solution to equation 6 either does not exist or it is non-unique. In all of our

experiments, the inverse problem in equation 6 was always well-posed. In the case of dipole

(derivative) sources and receivers, as used for example in acoustic time-reversal (Cassereau

and Fink, 1993; Fink and Prada, 2001; Fink, 2006), in wavefield extrapolation (Berkhout and

Wapenaar, 1989; Wapenaar, 1993), in seismic interferometry (Wapenaar, 2004; van Manen

et al., 2005, 2006; Wapenaar and Fokkema, 2006), or in some cases in seismic acquisition

(Moldoveanu et al., 2007) or imaging (Halliday and Curtis, 2010; Vasconcelos et al., 2009,

2010), equations 1-3 need to be slightly modified to take into account whether differentiation

is performed at the source (to obtain a dipole source) or at the receiver (to obtain a dipole

receiver). When dipole sources or receivers are used, the direct wavefield in equation 2
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becomes

Ψ′0(xR) = ∂mΨ0(xR)

= s(ω)∂mG(xR,xS) ,

(7)

where ∂mG(xR,xS) is the partial derivative of the Green’s function between source xS and

receiver xR along the m-direction, evaluated at xS for a dipole source and at xR for a dipole

receiver.

When differentiation is performed with respect to sources, from equation 3 we get

Ψ′(x(i)) = Ψ′0(x(i)) +
N∑
j=1
j 6=i

Ψ′(x(j))A(j)G(x(i),x(j)) , (8)

where Ψ′0(x(i)) is the direct dipole-source wavefield to scatterer (i). The total dipole-source

wavefield recorded by receiver xR is given by

Ψ′(xR) = Ψ′0(xR) +
N∑
i=1

Ψ′(x(i))A(i)G(xR,x(i)) . (9)

When differentiation is performed with respect to receivers, the total wavefield recorded

by a dipole receiver at xR is simply given by:

Ψ′(xR) = Ψ′0(xR) +
N∑
i=1

Ψ(x(i))A(i)∂mG(xR,x(i)) , (10)

where ∂mG(xR,x(i)) is the partial derivative of the Green’s function between scatterer (i)

and receiver xR evaluated along the m-direction at xR. Equations 7-10 can therefore be

used to solve a similar inverse problem to that in equation 6, to obtain the total wavefield

from source xS to receiver xR when dipole or derivative Green’s functions are used.

Since analytical Green’s function formulae are available in all three dimensions, the

calculation of the impulse response between two points is straightforward in 1D, 2D and

3D, as monopole and dipole (derivative) Green’s functions can easily be calculated using
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analytic formulae (see Appendix A). Figure 2 shows the results of modelling monopole

(black solid curves) and dipole (dark gray dashed curves) Green’s functions in one, two and

three dimensions, with and without a source wavelet of central frequency 10 Hz: while the

shape of the analytical Green’s functions (Figures 2(a), 2(c), 2(e)) looks somewhat odd,

realistic-looking seismograms (Figures 2(b), 2(d), 2(f)) are obtained when the analytical

Green’s functions are convolved with a wavelet (Figures 2(g) and 2(h)). In this example,

a total of 256 frequencies were evaluated in the range 0.39-100 Hz in a medium of uniform

velocity 1000 m s−1, and for a source-receiver distance of 200 m. As expected, the arrival

times in the monopole Green’s functions peak at 0.2 s, while the analytical dipole Green’s

functions correctly reconstruct the spatial derivatives of the monopole signals (cfr. analytical

derivatives obtained using the formulae in Appendix A and numerical derivatives obtained

using a finite-difference approximation in Figures 2(b), 2(d) and 2(f)).

CODE DESCRIPTION

The Foldy acoustic modelling code model gfs p scat acoust.m that goes along with this

paper is a well commented MATLAB script that models direct and scattered wavefields

generated by monopole and dipole sources of volume injection and volume injection rate,

recorded by monopole and dipole receivers. The code uses the analytical Green’s function

formulae in Appendix A to compute the impulse response of a medium of constant velocity

c, with the option of applying a Ricker wavelet of a certain central frequency as source

signature. In the absence of scatterers, the impulse response is evaluated only using the

Green’s function formulae in Appendix A; when scatterers are present, the code uses the

above theory of multiple scattering developed by Foldy (1945) to compute the scattered

part of the wavefield.

11



The code consists of a main MATLAB function and a number of sub-functions that

work in combination:

• model gfs p scat acoust.m: the main modelling function, models direct and scattered

acoustic pressure Green’s functions in a homogeneous acoustic medium in the fre-

quency domain, by applying the equations listed in the previous section.

• acoustic p gfs direct f.m: models direct Green’s functions in a homogeneous acoustic

medium in the frequency domain. These Green’s functions are fed into model gfs p scat acoust.m

to evaluate the total wavefield through the medium.

• rickerwavl time.m: computes a Ricker wavelet of any desired central frequency fc.

The length of the wavelet (in seconds) is given by

nt
2fmax

, (11)

where fmax is the maximum modelled frequency and nt is the nearest integer (towards

infinity) to the ratio

2fmax
fc

. (12)

• centerfreqs.m: creates a centred frequency spectrum from the one-sided spectrum

obtained from modelling.

The outputs can be given in either or both of the frequency and time domains. If

scattering is included, the wavefields are given as the sum of the direct and scattered

wavefields (total wavefield), with the option of including separate direct and/or scattered

wavefields in the output. Standard output includes a vector of the actual frequency/time

samples for which output values are given, and the actual Ricker wavelet used if a source

wavelet is applied.
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APPLICATION TO SEISMIC INTERFEROMETRY

Seismic interferometry is a relatively new field of research in seismology which has been gain-

ing increasing importance since its mathematical basis was derived early in this millennium.

Although early results were obtained from laboratory experiments which used ultrasonic

and thermal noise (Lobkis and Weaver, 2001; Weaver and Lobkis, 2001), the application of

this technique currently spans a variety of fields, as interferometric theory may be equally

applied to acoustic, elastic, electromagnetic, seismoelectric and electrokinetic wavefields.

The term seismic interferometry refers to a set of methods of Green’s function construction

through cross-correlation (Wapenaar, 2004; van Manen et al., 2005, 2006; Wapenaar and

Fokkema, 2006), convolution (Slob et al., 2007; Slob and Wapenaar, 2007) or deconvolution

(Vasconcelos and Snieder, 2008a,b; Wapenaar et al., 2008; Wapenaar and van der Neut,

2010; Wapenaar et al., 2011; Minato et al., 2011) of seismic wavefields. Inter-receiver in-

terferometry by cross-correlation uses a boundary of seismic sources (active sources such as

dynamite or passive sources such as microseisms) to construct the Green’s function between

pairs of receivers located within the boundary as though one of the receivers had actually

been a source that was recorded by the other receiver (Figure 3). This has important im-

plications in the study of the Earth’s properties, as new information about the medium of

propagation can be obtained without directly recording the wavefield propagating between

the two receiver locations (which would otherwise require a source to be placed at xA in

Figure 3). Within the Earth sciences, the application of seismic interferometry ranges from

industrial exploration to crustal seismology and volcano monitoring: all of these applica-

tions take advantage of the fact that, in its various forms, seismic interferometry provides

either new or more accessible information about the medium of propagation by converting

receivers into virtual (imagined) sources of seismic energy, and vice-versa. This method
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has been applied to image regional and continental scale seismic velocity structures (Sabra

et al., 2005; Shapiro et al., 2005), for volcano or earthquake monitoring (Sens-Schönfelder

and Wegler, 2006; Wegler and Sens-Schönfelder, 2007; Brenguier et al., 2007, 2008a,b), for

industrial imaging (Bakulin and Calvert, 2004, 2006; Bakulin et al., 2007), noise removal

(Curtis et al., 2006; Dong et al., 2006; Halliday et al., 2007, 2008, 2010; Halliday and Curtis,

2008, 2009b; Duguid et al., 2011), and to model synthetic waveforms (van Manen et al.,

2005, 2006, 2007; Halliday et al., 2012).

Interferometry is a good area to test and demonstrate the Foldy code as it is a field

in rapid development where new algorithms are being developed monthly (for reviews see

Curtis et al. (2006), Wapenaar et al. (2010a,c), Galetti and Curtis (2012)). Because it is

exact, the Foldy method of acoustic wavefield modelling provides a good method to test

these new algorithms. Acoustic interferometric modelling formulae using wavefield cross-

correlation or convolution have so far been derived by van Manen et al. (2005) and Wapenaar

and Fokkema (2006) in the inter-receiver case, by Curtis et al. (2009) in the inter-source

case, and by Curtis and Halliday (2010) in the source-receiver case. Further interferometric

theory that uses deconvolution or multi-dimensional deconvolution of wavefields has been

derived by Vasconcelos and Snieder (2008a), Vasconcelos and Snieder (2008b), Wapenaar

et al. (2008), Minato et al. (2011) and Wapenaar et al. (2011). Because all of these formulae

require traces from many combinations of boundary sources or receivers to be added or

inverted using either cross-correlation, convolution or deconvolution, any error present in

the modelled data will propagate across subsequent operations. As a consequence, although

the formulae are exact, the practical results of applying seismic interferometry may not be

as accurate as the theory predicts.

In the following sections, we show how synthetic data produced with our Foldy MAT-
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LAB modelling code can be used to test the theory of inter-receiver interferometry. In the

first example, the results of interferometry performed using exact and approximate inter-

ferometric formulae (see equations 13-14) are compared. In the second example, we use

both the Foldy method and a finite-difference code to model signals from a boundary of

sources to two central receivers. By performing interferometry with both datasets, we are

then able to estimate the size of the errors produced by the two modelling schemes and to

evaluate how errors in the modelling propagate through subsequent operations on the data.

The code package also includes examples of inter-source and source-receiver interferometry

which use similar geometries to those presented in the following examples.

Inter-receiver interferometry example

Classical inter-receiver interferometry uses a boundary of seismic sources to construct the

wavefield that would propagate between the locations of two receivers within the medium of

propagation. This is done by cross-correlating the traces recorded at the two receivers from

each source on the boundary, and stacking (summing) all of those cross-correlations over the

source positions. The result is a two-sided signal, each side representing energy travelling

between the two receivers in one or other of the opposite directions. In mathematical form,

this process can be represented by the following formula, given in the frequency domain

where cross-correlation corresponds to a product when the complex conjugate of one of the

factors is taken first (Wapenaar and Fokkema, 2006):

G(xB,xA, ω)−G∗(xB,xA, ω)

=
∫
S

1
ρ(x)

[(∂jG(xB,x, ω))G∗(xA,x, ω)

−G(xB,x, ω) (∂jG∗(xA,x, ω))]nj dS . (13)
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Here, ρ(x) is the density of the medium at x, the superscript star ∗ denotes complex conju-

gation in the frequency domain (equivalent to time-reversal in the time domain, if applied

to all terms in the Fourier transform of a time series), ∂j represents partial differentiation

in the xj-direction with respect to the source coordinate x, nj is the component of the

boundary normal along the xj-direction, and G and ∂jG represent Green’s functions as

responses to monopole and dipole sources. Einstein’s summation convention applies for

repeated indices and the integral over boundary S ensures summation over all boundary

sources is performed.

By assuming a high frequency regime, that the surrounding surface of sources S is a

sphere with very large radius, and that no energy scatters back through S once it has left,

equation 13 can be simplified using the Sommerfield radiation conditions to eliminate the

derivatives, giving (Wapenaar and Fokkema, 2006):

G(xB,xA, ω)−G∗(xB,xA, ω)

≈ −2ιω
ρc

∫
S

G(xB,x, ω)G∗(xA,x, ω) dS , (14)

where c is the propagation velocity of the medium and ι is the imaginary unit. The result of

either of equations 13 and 14 is a two sided signal, at positive and negative times: the causal

(positive-time) part of the signal represents the Green’s function between xA and xB, while

the acausal (negative-time) part of the signal represents the negative of the Green’s function

between xA and xB (or equivalently, the negative of the Green’s function travelling between

xB and xA, by acoustic source-receiver reciprocity). Both formulae assume positive volume

injection sources are used, as indicated in Wapenaar and Fokkema (2006).

In practical applications, where continuous source boundaries are not available, the

integration factor in equations 13 and 14 can be discretised using a summation over M
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sources, giving

G(xB,xA, ω)−G∗(xB,xA, ω)

≈
M∑
k=1

{
1

ρ(xk)
[(∂jG(xB,xk, ω))G∗(xA,xk, ω)

−G(xB,xk, ω) (∂jG∗(xA,xk, ω))]nj dSk} (15)

in place of equation 13, and

G(xB,xA, ω)−G∗(xB,xA, ω)

≈ −2ιω
ρc

M∑
k=1

{G(xB,xk, ω)G∗(xA,xk, ω) dSk} (16)

in place of equation 14, where dSk is the source sampling interval acting as an extra weight-

ing factor for each source k. Equations 15 and 16 are normally implemented when transient

sources at known positions are used for interferometry, and their application is demonstrated

in the following examples (and in all of the other examples in the code package).

An example of the use of inter-receiver interferometry to construct the Green’s function

between two points within a circular boundary of sources (Figure 4) is shown in Figure 5.

In this example we highlight the difference in the results of interferometry when the exact

interferometric formula including both monopolar and dipolar sources in equation 15 (a

discretised version of equation 13) and the approximate interferometric formula involving

only monopolar sources in equation 16 (a discretised version of equation 14) are used. As

expected, while the trace constructed using the exact interferometric formula in equation 15

(light gray dot-dashed) perfectly matches the true Green’s function (black solid), the trace

constructed using the approximate formula in equation 16 (dark gray dashed) presents small

errors which are due to the approximation conditions not being completely satisfied (i.e.,

the radius of the circle has a finite size). The latter also contains a number of artefacts that
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are non-physical and stationary with respect to source position (e.g., the event at ∼0.12 s).

Each of these arrivals is the result of cross-correlation of the scattered monopole wavefields

to A and B, and its amplitude is proportional to the energy scattered by the diffractor that

produced it (Snieder et al., 2008; Wapenaar et al., 2010b). For the geometry in Figure 4,

each scatterer (i) contributes a non-physical arrival at time

t(i) =
∣∣∣∣ |xA − x(i)| − |xB − x(i)|

c

∣∣∣∣ , (17)

where c is the velocity of the medium and xA, xB and x(i) are the positions of receiver

A, receiver B and scatterer (i), respectively. For the geometry shown in Figure 4 and a

background velocity of 1000 m s−1, non-physical arrivals of this origin are expected at ∼0.03

s, ∼0.12 s and ∼0.20 s. Notice that, with the exception of the non-physical arrival at ∼0.12

s, most of the errors incurred by using equation 16 are so tiny that the modelling code must

be extremely accurate to detect them and hence to test the severity of the approximation.

Foldy vs. FD modelling example

As outlined in the Introduction, the main advantage of the Foldy method over grid-based

schemes such as finite-differences is the fact that it produces an exact construction of direct

and scattered events. Since modelling errors can be neglected, any error in the outputs of

an algorithm can be attributed to errors in the theory itself rather than to the modelling

method. In this section, we show how errors in modelling may propagate across any further

operation (e.g. cross-correlation) that is performed on the modelled data.

We used seismic interferometry to construct the Green’s function between receivers

A and B by using the signals produced by a circular boundary of sources (Figure 6).

We produced two synthetic datasets using first our Foldy MATLAB code, and second the
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2D finite-difference (FD) modelling code fdelmodc (courtesy of Jan Thorbecke, TU Delft).

A grid-spacing of 1 m and a time-step of 0.5 ms were used in the FD modelling. In

order to keep the two datasets as consistent as possible, scatterers were not included, only

monopole volume-injection sources were used, and for both modelling codes interferometry

was performed using the approximate formula in equation 16.

The reference Green’s functions between A and B, modelled using the two methods, are

shown in Figure 7. As illustrated by Thorbecke and Draganov (2011) in a similar exper-

iment, the two Green’s functions are perfectly overlapping, with a difference in the peak

amplitude of less than 0.02%. However, when the Green’s function between A and B is cre-

ated using seismic interferometry, errors in the interferometric Green’s function constructed

from the FD data become more visible (Figure 8). Since the FD interferometric trace was

constructed using the approximate Green’s function formula, we are not able to determine

whether the errors are caused by compounded effects of small imperfections in the mod-

elled data, or by interferometry itself. In contrast, the Green’s function constructed from

the Foldy-modelled data closely matches the true Green’s function. After observing similar

effects in the previous example, we can safely conclude that any error in the interferometric

Green’s function in this case is due to the use of the approximate formula in equation 16,

and not to the use of the Foldy code.

Finally, note that because it does not require a grid, in some cases the Foldy method

may be faster than traditional FD modelling. In the above examples, the computation of

the Green’s functions from all sources to the two receivers took ∼352 seconds with fdelmodc

and ∼4.7 seconds with model gfs p scat acoust on a Quad-Core AMD Opteron processor

with CPU running at 2.21 GHz. This increase in efficiency may also contribute to more

rigorous testing (on more cases/scenarios) of novel algorithms in future.
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CONCLUSIONS

The ability to model exact data is an important requirement when testing new theory

and algorithms in acoustics, seismics and seismology. At present, grid-based modelling

schemes allow the user to produce synthetic seismograms for wavefields propagating through

simple to very complex media. However, both time and space-domain discretization in such

modelling schemes introduce errors that may propagate inside any subsequent operation

that is performed on the synthetic data. On the other hand, analytical solutions to the

wave equation are not subject to numerical dispersion errors and therefore provide exact

results (to machine precision).

In this article, we presented a MATLAB code that uses analytical solutions to the wave

equation in 1D, 2D and 3D to calculate Green’s functions in multiply-scattering media.

Although it is currently designed to work in the acoustic regime and to output monopole or

dipole pressure responses, the theory behind the code could easily be transferred to an elastic

modelling scheme. For example, this is possible provided that the scattering amplitudes

used account for conversions between modes (e.g., P- and S-wave modes, or higher order

surface wave modes). In the case of surface waves, we have also used a modified form of the

2D acoustic code that takes the dispersive nature of surface waves into account, and have

found this is a quick and efficient way to model scattered surface waves.

In any case, because it is fast, exact and virtually error-free, this code may be an ideal

choice when a synthetic dataset is needed to test the validity of new algorithms using simple

geometries. If the theory in the algorithm is valid, one can then safely move on to more

complex geometries that require grid-based modelling methods, or to real data tests and

applications.
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APPENDIX A

ANALYTIC MONOPOLE AND DIPOLE GREEN’S FUNCTIONS

The monopole Green’s function (impulse response) in a medium with constant velocity c

satisfies the following equation in the frequency domain (the Helmholtz equation):

∇2G(x,x0, ω) + k2G(x,x0, ω) = −δ(x− x0) , (A-1)

where G(x,x0, ω) is the Green’s function at location x due to a source at location x0, k

is the wavenumber (which satisfies k = ω/c, where ω is angular frequency), and the term

δ(x−x0) represents the source defined as a spatio-temporal impulse (delta function) acting

at location x0 at time t = 0. The Helmholtz equation can be solved for the Green’s function

in N dimensions, and full derivations in one, two or three dimensions can be found in Snieder

(2009). The solution to the Helmholtz equation is given in one dimension by

G1D(x, x0) = − ι

2k
e−ιk|x−x0|

= − 1
2k
e−ι(k|x−x0|−π

2 ) ,

(A-2)

in two dimensions by

G2D(x,x0) = − ι
4
H

(2)
0 (k|x− x0|) , (A-3)

in two dimensions (far-field case) by

G2D far(x,x0) = − ι
4
e−ι(k|x−x0|−π

4 )
√

2
πk|x− x0|

= −1
4
e−ι(k|x−x0|− 3π

4 )
√

2
πk|x− x0|

,

(A-4)

and in three dimensions by

G3D(x,x0) =
1

4π
e−ιk|x−x0|

|x− x0|
, (A-5)

22



where H(2)
0 is the Hankel function of the second kind and order 0, and the imaginary unit

ι =
√
−1 has been taken inside the exponential term in the second line of equations A-2

and A-4.

Dipole Green’s functions may be obtained from spatial differentiation of equations A-2-

A-5 and are given by

∂G1D(x, x0) = −ιkG1D(x, x0) (A-6)

in one dimension, by

∂mG
2D(x,x0) =

ιk

4
cos(φm)H(2)

1 (k|x− x0|) , (A-7)

in two dimensions, by

∂mG
2D far(x,x0) = −G2D far(x,x0) cos(φm)

[
ιk +

1
2|x− x0|

]
, (A-8)

in two dimensions (far-field case), and by

∂mG
3D(x,x0) = −G3D(x,x0) cos(φm)

[
ιk +

1
|x− x0|

]
, (A-9)

in three dimensions. H(2)
1 is the Hankel function of the second kind and order 1, and the

term cos(φm) is the direction cosine of the receiver position x with respect to the source

location x0 along the m-direction, i.e., the cosine of the angle between vector x − x0 and

the m-direction. Note that all above equations assume the exponential term in the Fourier

transform from frequency to time domain to be eιωt, which is the sign convention used by

MATLAB (as opposed to e−ιωt, which is more usual in Geophysics, for example).
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APPENDIX B

SCATTERING AMPLITUDE IN D-DIMENSIONS

For a certain distribution of N isotropic point scatterers, the scattering amplitude A(i) of

scatterer (i) located at x(i) is a complex quantity that relates the total wavefield Ψ0(x(i))

incident on the scatterer to the scattered wavefield ΨS(x) measured at x, according to

ΨS(x) = Ψ0(x(i))A(i)G(x,x(i)) , (B-1)

where G(x,x(i)) is the Green’s function between x(i) and x. As shown by Snieder (1999), the

scattering amplitude contains the superposition of all possible multiple scattering interac-

tions with the same scatterer and, since scattering is assumed to be isotropic, is independent

of the angle of incidence.

The real and imaginary parts of the scattering amplitude are related via the optical

theorem (generally, an optical theorem describes the conservation of energy between a wave

incident on a scattering object and the resulting wave scattered by that object). In simple

acoustic media with uniform background velocity, the relationship between the real and

imaginary part of the scattering amplitude can be derived by equating the total energy

loss for unit incident wavefield (the so-called total cross-section ΩT ) to the total scattered

energy (the so-called scattering cross-section ΩS). This approach assumes that no energy

is lost to anelastic attenuation, hence the energy loss of the incident wavefield is due to

scattering alone.

In two dimensions, the total and scattering cross-sections are given respectively by

(Groenenboom and Snieder, 1995)

ΩT = −=(A)
k

(B-2)
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and

ΩS =
|A|2

4k
, (B-3)

where the latter expression is obtained by using the far-field Green’s function (equation A-4)

to get ΨS in equation B-1 and integrating the power of the scattered field |ΨS |2 = ΨSΨ∗S

over 2π. Using a similar approach, expressions similar to those in the above equations can

be derived in one and three dimensions, and by equating the total and scattering cross-

sections the relationships between the real and imaginary parts of the scattering amplitude

can be obtained in one, two and three dimensions (Snieder, 1999):

<(A) = ±



(−=(A) [2k + =(A)])1/2 in 1D

(−=(A) [4 + =(A)])1/2 in 2D(
−=(A)

[
4π
k

+ =(A)
])1/2

in 3D

(B-4)

These expressions impose the following constraints on the value of the imaginary part of

the scattering amplitude:

−2k ≤ =(A) ≤ 0 in 1D

−4 ≤ =(A) ≤ 0 in 2D

−4π
k
≤ =(A) ≤ 0 in 3D

(B-5)

The relationships between the real and imaginary components of A are of particular impor-

tance as they ensure that the scattering strength of each scatterer satisfies the requirement

of energy conservation. Optical theorems for more complex scattering media also exist

(Halliday and Curtis, 2009a; Douma et al., 2011; Wapenaar and Douma, 2012) and can be

applied to obtain a correct estimate of the scattering amplitude. However, the details of

these theorems will not be discussed here as their application is beyond the scope of our

simple modelling code.
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LIST OF FIGURES

1 The total wavefield reaching a receiver at xR from a source at xS , and scattered by

a number of diffractors (e.g. x(i), x(j)), is given by the sum of a direct term (dark gray solid

arrow) and a multiply scattered term (sum of all of the black dashed arrows), as indicated

in equation 1.

2 Examples of wavefield modelling in (a) 1D, (c) 2D and (e) 3D using analytical

Green’s function formulae. The medium has velocity 1000 m s−1 and the source-receiver

distance is 200 m. A wavelet of central frequency 10 Hz (bottom panels: in time domain

(g) and frequency domain (h)) is applied to the analytical Green’s functions shown in the

top-three left panels to give the corresponding seismograms in (b) 1D, (d) 2D and (f) 3D.

Derivative Green’s functions are calculated analytically within the code (light gray solid

traces) and are compared to numerical derivatives (dark gray dashed traces) obtained by

placing additional sources along the direction of differentiation and using finite-differences

(Richardson’s extrapolation) to calculate the derivative. The analytical derivatives obtained

with the Foldy code perfectly match the numerical derivatives.

3 Schematic illustration of a typical geometry for correlational seismic interferometry.

Two receivers (inverted triangles) are surrounded by a boundary of sources (explosions); at

each source position, the boundary normal is denoted by n̂. The method of seismic interfer-

ometry uses one of the receivers (e.g. xA) as a ‘virtual’ (imagined) source, and constructs

the signal (Green’s function) as though this source was recorded by the other receiver (e.g.

xB).

4 Geometry of numerical example with results in Figure 5: two receivers (inverted

triangles) and three scatterers (empty circles) are surrounded by a circular boundary of

sources (stars). Only every sixth source is shown for clarity.
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5 True and (positive-time) interferometric traces from receiver A to receiver B in Fig-

ure 4 with four magnified panels. The light-gray dot-dashed trace, constructed using the

exact interferometric formula in equation 15 (discretised version of equation 13), perfectly

matches the true trace; the dark-gray dashed trace, constructed using the approximate

interferometric formula in equation 16 (discretised version of equation 14), presents some

errors which are due to the approximations in that formula. The arrival at ∼0.12 s on the

monopole interferometry trace is non-physical, stationary with respect to the sources, and

arises from the cross-correlation of scattered waves to A and B. Similarly, the error in the

monopole interferometry trace shown in the top-left magnified panel is due to interference

with a non-physical arrival of similar origin at ∼0.20 s.

6 Experimental geometry used to obtain results in Figures 7 and 8: two receivers

(inverted triangles) are surrounded by a circular boundary of sources (stars). Only every

sixth source is shown for clarity.

7 True traces from receiverA to receiverB in Figure 6 evaluated using the 2D analytic

Green’s function formula used in the Foldy method (black solid line), and a finite-difference

method (gray dot-dashed line). The two traces overlap almost perfectly, and differences are

only visible in the magnified panels.

8 True and (positive-time) interferometric traces from receiver A to receiver B. Be-

cause interferometry was performed using the approximate interferometric formula in equa-

tion 14, small errors are visible in the interferometric Green’s functions. The errors are

larger for the trace constructed using the finite-difference modelled data. Only the avail-

ability of the Foldy solution makes clear that these errors are not due to the monopole

approximation in equation 14, but derive directly from the tiny finite-difference errors ob-

served in Figure 7.
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Figure 1: The total wavefield reaching a receiver at xR from a source at xS , and scattered

by a number of diffractors (e.g. x(i), x(j)), is given by the sum of a direct term (dark

gray solid arrow) and a multiply scattered term (sum of all of the black dashed arrows), as

indicated in equation 1.

Galetti et al. (2012) –
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2: Examples of wavefield modelling in (a) 1D, (c) 2D and (e) 3D using analytical

Green’s function formulae. The medium has velocity 1000 m s−1 and the source-receiver

distance is 200 m. A wavelet of central frequency 10 Hz (bottom panels: in time domain

(g) and frequency domain (h)) is applied to the analytical Green’s functions shown in the

top-three left panels to give the corresponding seismograms in (b) 1D, (d) 2D and (f) 3D.

Derivative Green’s functions are calculated analytically within the code (light gray solid

traces) and are compared to numerical derivatives (dark gray dashed traces) obtained by

placing additional sources along the direction of differentiation and using finite-differences

(Richardson’s extrapolation) to calculate the derivative. The analytical derivatives obtained

with the Foldy code perfectly match the numerical derivatives.

Galetti et al. (2012) –
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Figure 3: Schematic illustration of a typical geometry for correlational seismic interferome-

try. Two receivers (inverted triangles) are surrounded by a boundary of sources (explosions);

at each source position, the boundary normal is denoted by n̂. The method of seismic inter-

ferometry uses one of the receivers (e.g. xA) as a ‘virtual’ (imagined) source, and constructs

the signal (Green’s function) as though this source was recorded by the other receiver (e.g.

xB).
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Figure 4: Geometry of numerical example with results in Figure 5: two receivers (inverted

triangles) and three scatterers (empty circles) are surrounded by a circular boundary of

sources (stars). Only every sixth source is shown for clarity.
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Figure 5: True and (positive-time) interferometric traces from receiver A to receiver B in

Figure 4 with four magnified panels. The light-gray dot-dashed trace, constructed using the

exact interferometric formula in equation 15 (discretised version of equation 13), perfectly

matches the true trace; the dark-gray dashed trace, constructed using the approximate

interferometric formula in equation 16 (discretised version of equation 14), presents some

errors which are due to the approximations in that formula. The arrival at ∼0.12 s on the

monopole interferometry trace is non-physical, stationary with respect to the sources, and

arises from the cross-correlation of scattered waves to A and B. Similarly, the error in the

monopole interferometry trace shown in the top-left magnified panel is due to interference

with a non-physical arrival of similar origin at ∼0.20 s.
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Figure 6: Experimental geometry used to obtain results in Figures 7 and 8: two receivers

(inverted triangles) are surrounded by a circular boundary of sources (stars). Only every

sixth source is shown for clarity.
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Figure 7: True traces from receiver A to receiver B in Figure 6 evaluated using the 2D

analytic Green’s function formula used in the Foldy method (black solid line), and a finite-

difference method (gray dot-dashed line). The two traces overlap almost perfectly, and

differences are only visible in the magnified panels.
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Figure 8: True and (positive-time) interferometric traces from receiver A to receiver B.

Because interferometry was performed using the approximate interferometric formula in

equation 14, small errors are visible in the interferometric Green’s functions. The errors

are larger for the trace constructed using the finite-difference modelled data. Only the

availability of the Foldy solution makes clear that these errors are not due to the monopole

approximation in equation 14, but derive directly from the tiny finite-difference errors ob-

served in Figure 7.
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