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Summary

This guide accompanies the Foldy acoustic modelling Matlab code written by Erica Galetti

(now at the University of Edinburgh, School of GeoSciences) based on similar codes written

by David Halliday and Dirk-Jan van Manen (now at Schlumberger Gould Research - SGR).

The code uses the Foldy method to model the direct and scattered acoustic wavefield from

one (or more) sources to one (or more) receivers. Unlike other modelling schemes such as

finite-differences, the Foldy method is a pseudo-analytic method of waveform modelling which

allows a theoretically exact construction of the direct and scattered parts of a wavefield. Its

main advantage lies in the fact that, while all multiple scattering interactions are taken into

account, numerical dispersion errors are avoided, making it an ideal modelling method to test

new theory in seismology and in seismic interferometry in particular.

Whithin this guide, the theory behind the modelling code is presented, followed by a

detailed description of interferometric theory in the inter-receiver (van Manen et al. (2005)

and Wapenaar & Fokkema (2006)), inter-source (Curtis et al. (2009)) and source-receiver

(Curtis & Halliday (2010)) case. A number of modelling and interferometry examples which

are included in the package are also presented.
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CHAPTER 1

Quick-Start Guide

1.1 Using the Modelling Code

1.1.1 Code Description1

The Foldy acoustic modelling code model gfs p scat acoust.m is a well commented

Matlab script that models direct and scattered wavefields generated by monopole and dipole

sources of volume injection and volume injection rate, recorded by monopole and dipole

receivers. The code uses the analytical Green’s function formulae in Appendix A.1 to

compute the impulse response of a medium of constant velocity c, with the option of applying

a Ricker wavelet of a certain central frequency as source signature. In the absence of

scatterers, the impulse response is evaluated only using the Green’s function formulae in

Appendix A.1; when scatterers are present, the code uses the theory of multiple scattering

(section 2.1) developed by Foldy (1945) to compute the scattered part of the wavefield.

The code consists of a main Matlab function and a number of sub-functions that work in

combination:

• model gfs p scat acoust.m: the main modelling function, models direct and

scattered acoustic pressure Green’s functions in a homogeneous acoustic medium in the

frequency domain, by applying the equations listed in Appendix A.1.

• acoustic p gfs direct f.m: models direct Green’s functions in a homogeneous

acoustic medium in the frequency domain. These Green’s functions are fed into

model gfs p scat acoust.m to evaluate the total wavefield through the medium.

• rickerwavl time.m: computes a Ricker wavelet of any desired central frequency
1This section is an (adapted) excerpt from Galetti et al. (2013).
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Chapter 1. Quick-Start Guide

over a certain time interval. The length of the wavelet is given by

ceil(1/(fc*dt))*dt, where fc is the central frequency of the wavelet and dt is

the sampling interval, given by 1/(2*maxf), with maxf equal to the maximum

modelled frequency.

• centerfreqs.m: creates a centred frequency spectrum from the one-sided spectrum

obtained from modelling.

The outputs can be given in either or both of the frequency and time domains. If scattering is

included, the wavefields are given as the sum of the direct and scattered wavefields (total

wavefield), with the option of including separate direct and/or scattered wavefields in the

output. Standard output includes a vector of the actual frequency/time samples for which

output values are given, and the actual Ricker wavelet used if a source wavelet is applied.

In addition to the core modelling functions, the code package includes the following

functions to perform interferometry and plotting:

• do xcorr int.m: performs either inter-receiver or inter-source cross-correlational

interferometry in the time or frequency domain.

• makecircbound.m: creates a circular boundary of evenly-spaced points.

• wiggles.m: creates a wiggle plot of seismic traces (as used in the worked example in

section 2.3.3: example 3 inter receiver F array.m).

1.1.2 Input/Output

The function call reads as follows:

[varargout] = model_gfs_p_scat_acoust (srx, rxs, maxfreq, nfreq, c, dim, ...

srctype, diploc, scatflag, wavlflag, freqflag, timeflag, sepflag, ...

varargin)

In the input:

srx location of sources in matrix having:

1st column x-coords

2nd column y-coords (ignored by code if dim set to

‘1d’)

3rd column z-coords (ignored by code if dim set to

‘1d’, ‘2d’ or ‘2d far’)
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rcx location of receivers in matrix having:

1st column x-coords

2nd column y-coords (ignored by code if dim set to

‘1d’)

3rd column z-coords (ignored by code if dim set to

‘1d’, ‘2d’ or ‘2d far’)

maxfreq maximum frequency to model

nfreq number of frequencies to model (the code rounds this up to the

nearest power of two to make fft/ifft run faster - go to lines

277-278 to change this)

c velocity of the medium (in m s-1)

dim number of dimensions - important for geometrical spreading

‘1d’ uses the 1D Green’s function formula

(equation (A.2))

‘2d’ uses the exact 2D Green’s function

formula (equation (A.3))

‘2d far’ uses the far-field 2D Green’s function

formula (equation (A.4))

‘3d’ uses the 3D Green’s function formula

(equation (A.5))

srctype select source type:

‘volinjpos’ positive volume injection (equations

(2.11) and (A.15))

‘volinjneg’ negative volume injection (equations

(2.16) and (A.17))

‘volinjratepos’ positive volume injection rate (equations

(2.21) and (A.16))

‘volinjrateneg’ negative volume injection rate (equations

(2.26) and (A.18))
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diploc compute the dipole (derivative) Green’s function...

‘srcdip’ ...with respect to sources (as in inter-

receiver interferometry)

‘recdip’ ...with respect to receivers (as in inter-

source interferometry)

scatflag are there any scatterers?

‘scatn’ no

‘scaty’ yes

wavlflag apply source wavelet?

‘wavln’ no

‘wavly pos’ yes, with Ricker wavelet at positive times

‘wavly centr’ yes, with Ricker wavelet centred on zero

time

‘wavly neg’ yes, with Ricker wavelet at negative times

‘wavly shift’ yes, with Ricker wavelet shifted by ts

seconds from zero

freqflag output in frequency domain?

‘freqn’ no frequency-domain output

‘freqy 1nf’ output frequencies in range [1:nf] (zero

not included)

‘freqy 1s’ output positive frequency spectrum in

range [0:nf] (zero included)

‘freqy 2s’ output double-sided frequency spectrum

in range [-nf:nf-1]

timeflag output in time domain?

‘timen’ no time-domain output

‘timey’ output wavefields in time domain

sepflag separate direct and scattered wavefield in distinct outputs?

‘tot’ output total (sum of direct and scattered)

‘dir’ output total and direct

‘scat’ output total and scattered

‘dirscat’ output total, direct and scattered
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Varargin includes:

scats location of scatterers in matrix having:

1st column x-coords

2nd column y-coords (ignored by code if dim set to

‘1d’)

3rd column z-coords (ignored by code if dim set to

‘1d’, ‘2d’ or ‘2d far’)

4th+ column imaginary part of scattering amplitude 2

fc central frequency of Ricker wavelet

ts time-shift (in s) of peak of Ricker wavelet (only needed if

wavlflag is set to ‘wavly shift’; gets rounded up to

ceil((1/fc)/dt)*dt by the code)

When ‘wavly shift’ is selected, the central frequency fc and the time-shift ts should

be inserted in the function call as an array ([fc,ts]).

In the output (varargout):

frequencies frequency vector matching the modelled frequencies

gf mon p f monopole source/receiver, total wavefield, frequency domain

gf dip p f dipole source/receiver, total wavefield, frequency domain

gfdir mon p f monopole source/receiver, direct wavefield, frequency domain

gfdir dip p f dipole source/receiver, direct wavefield, frequency domain

gfscat mon p f monopole source/receiver, scattered wavefield, frequency

domain

gfscat dip p f dipole source/receiver, scattered wavefield, frequency domain

time time vector matching the time domain outputs

gf mon p t monopole source/receiver, total wavefield, time domain

gf dip p t dipole source/receiver, total wavefield, time domain

gfdir mon p t monopole source/receiver, direct wavefield, time domain

gfdir dip p t dipole source/receiver, direct wavefield, time domain

gfscat mon p t monopole source/receiver, scattered wavefield, time domain

2A detailed discussion on the scattering amplitude A is given in Appendix A.2. As shown in equation (A.13),
the imaginary part of the scattering amplitude may or may not depend on frequency.

If =(A) is chosen to be independent of frequency, the value of =(A) for each scatterer should be entered
in the 4th column of scats. In this case, the value of =(A) should be between −2∗min(k) and 0 in 1D,
between −4 and 0 in 2D, and between −4π/max(k) and 0 in 3D, where k is the array of wave numbers
(k=2*pi*frequencies/c).

If =(A) is chosen to be dependent on frequency, the values of =(A) for each scatterer should be entered as rows
from column 4 to column 3+nfreq of matrix scats, with frequency increasing along dimension 2 of the matrix
(i.e. first frequency greater than 0 in column 4, maxfreq in column 3+nfreq).
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gfscat dip p t dipole source/receiver, scattered wavefield, time domain

wavelet f source wavelet in frequency domain

wavelet t source wavelet in time domain (the centred wavelet has

positive time in sample range [1:nf], reverse negative time

in sample range [nf+1:2*nf])

Outputs in the frequency domain are given before outputs in the time domain, total

wavefields are given before separate wavefields, direct wavefields are given before scattered

wavefields. The source wavelets are given at the end of the output in both the frequency and

time domain. If the number of inputs and outputs does not match the number of

inputs/outputs required for a certain combination of flags, the code stops executing and an

error message is given.

1.2 Examples

1.2.1 Input/Output Examples

First, take the maximum frequency to model to be 100 Hz, model 256 frequencies, set the

medium velocity to 1000 m s-1, and use positive volume injection sources. Output the total

wavefield emitted by monopole and dipole sources srx with zero-phase source wavelet of

central frequency 30 Hz, scattered by scatterers at scats, recorded by receivers at rxs, using

the far-field two-dimensional Green’s function formula, in the frequency domain only from

frequency sample 1 to frequency sample 256:

[frequencies, gf_mon_p_f, gf_dip_p_f, wavelet_f] = ...

model_gfs_p_scat_acoust (srx, rxs, 100, 256, 1000, '2d', ...

'volinjpos', 'srcdip', 'scaty', 'wavly_centr', 'freqy_1nf', 'timen', ...

'tot', scats, 30)

Same as above but also convert the total wavefields to time domain:

[frequencies, gf_mon_p_f, gf_dip_p_f, time, gf_mon_p_t, gf_dip_p_t, ...

wavelet_f, wavelet_t] = model_gfs_p_scat_acoust (srx, rxs, 100, 256, ...

1000, '2d', 'volinjpos', 'srcdip', 'scaty', 'wavly_centr', ...

'freqy_1nf', 'timey', 'tot', scats, 30)

Same as above but also output the separate direct and scattered wavefields in the frequency and

time domain:

[frequencies, gf_mon_p_f, gf_dip_p_f, gfdir_mon_p_f, gfdir_dip_p_f, ...

gfscat_mon_p_f, gfscat_dip_p_f, time, gf_mon_p_t, gf_dip_p_t, ...

gfdir_mon_p_t, gfdir_dip_p_t, gfscat_mon_p_t, gfscat_dip_p_t, ...

wavelet_f, wavelet_t] = model_gfs_p_scat_acoust (srx, rxs, 100, 256, ...
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1000, '2d', 'volinjpos', 'srcdip', 'scaty', 'wavly_centr', ...

'freqy_1nf', 'timey', 'dirscat', scats, 30)

Same as the second example above but with no scattering and with a Ricker wavelet shifted by

+0.05 s:

[frequencies, gf_mon_p_f, gf_dip_p_f, time, gf_mon_p_t, gf_dip_p_t, ...

wavelet_f, wavelet_t] = model_gfs_p_scat_acoust (srx, rxs, 100, 256, ...

1000, '2d', 'volinjpos', 'srcdip', 'scatn', 'wavly_shift', ...

'freqy_1nf', 'timey', 'tot', [30,0.05])

Same as previous but with no source wavelet applied (i.e. just a delta function used):

[frequencies, gf_mon_p_f, gf_dip_p_f, time, gf_mon_p_t, gf_dip_p_t] = ...

model_gfs_p_scat_acoust (srx, rxs, 100, 256, 1000, '2d', ...

'volinjpos', 'srcdip', 'scatn', 'wavln', 'freqy_1nf', 'timey', 'tot')

Same as previous but calculate the Green’s functions derivatives at the receivers and only output

results in time domain:

[time, gf_mon_p_t, gf_dip_p_t] = model_gfs_p_scat_acoust (srx, rxs, 100, ...

256, 1000, '2d', 'volinjpos', 'recdip', 'scatn', 'wavln', 'freqn', ...

'timey', 'tot')

1.2.2 Example Plots

The waveforms gf mon p t shown in Fig. 1.1(a) are obtained by executing the following

commands in Matlab:

srx = [0,0,0]; % Source position

rxs = [500,80,0]; % Receiver position

maxfreq = 100; % Maximum frequency to model

nf = 256; % Number of frequencies to model

c = 1000; % Medium velocity

fc = 30; % Central frequency of Ricker wavelet

% Model the wavefield

[time, gf_mon_p_t, gf_dip_p_t, wavelet_t] = model_gfs_p_scat_acoust ...

(srx, rxs, maxfreq, nf, c, '2d', 'volinjpos', 'srcdip', 'scatn', ...

'wavly_centr', 'freqn', 'timey', 'tot', fc);

% fftshift source wavelet to center on zero-time (for plotting)

wavelet_t = fftshift(wavelet_t,1);

The waveforms in Fig. 1.1(b) are obtained by executing the following commands in Matlab:
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(a)

(b)

(c)

Figure 1.1. (a) and (b) Wavefields (pressure Green’s functions for a monopole source - gf mon p t)
modelled as indicated in section 1.2.2. (c) Zero-phase source wavelet wavelet t with central frequency
30 Hz, obtained as indicated in section 1.2.2.

srx = [0,0,0]; % Source position

rxs = [500,80,0]; % Receiver position

scats = [80,-150,0,-3;300,10,0,-4]; % Scatterers position

maxfreq = 100; % Maximum frequency to model

nf = 256; % Number of frequencies to model

c = 1000; % Medium velocity

fc = 30; % Central frequency of Ricker wavelet

% Model the wavefield

[time, gf_mon_p_t, gf_dip_p_t, wavelet_t] = model_gfs_p_scat_acoust ...

(srx, rxs, maxfreq, nf, c, '2d', 'volinjpos', 'srcdip', 'scaty', ...

'wavly_centr', 'freqn', 'timey', 'tot', scats, fc);

% fftshift source wavelet to center on zero-time (for plotting)

wavelet_t = fftshift(wavelet_t,1);
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CHAPTER 2

Theory and Applications

2.1 The Foldy Method1

Consider a source and a receiver respectively located at position xS and xR within a

homogeneous medium containing a distribution of N scatterers. The total wavefield Ψ(xR)

recorded at xR from the source at xS is given by the sum of the direct and scattered

wavefield: while the former can easily be calculated as a Green’s function from the source to

the receiver, the computation of the latter is more complicated as it requires the evaluation of

the direct wavefield to each scatterer, wavefield scattering or diffraction, and all possible

multiple-scattering interactions of that scattered field. Together these provide the total

wavefield radiated by each single scatterer (Figure 2.1). The total wavefield reaching the

receiver is finally obtained by summing the components of the wavefield radiated by each

scatterer which then propagate to the receiver location.

By assuming the diffractors are limited to isotropic point scatterers we can reduce the

multiple scattering process to a system of linear equations which can be solved numerically

(Foldy, 1945; Groenenboom & Snieder, 1995). In the frequency domain, the total wavefield

Ψ(xR) can be expressed as follows:

Ψ(xR) = Ψ0(xR) +
N∑
i=1

Ψ(x(i))A(i)G(xR,x
(i)) . (2.1)

Here Ψ0(xR) denotes the direct wavefield from xS to xR, Ψ(x(i)) denotes the total wavefield

(direct and scattered) reaching scatterer (i) located at x(i), A(i) is the scattering amplitude of

scatterer (i), andG(xR,x
(i)) is the full Green’s function between scatterer (i) and receiver xR.

1This section is an (adapted) excerpt from Galetti et al. (2013).
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Also, when the wavefield emitted by the source at xS is simply a Green’s function convolved

with a source wavelet s(ω), the direct wavefield Ψ0(xR) can be expressed as

Ψ0(xR) = s(ω)G(xR,xS) , (2.2)

where G(xR,xS) denotes the full Green’s function between source xS and receiver xR.

The scattering amplitudeA is a complex number whose real and imaginary components can

be determined from the optical theorem following principles of energy conservation. Within

our code, we assume energy loss within the medium is only due to the scattering process

and ignore the effects of anelastic attenuation. In order to satisfy the requirement of energy

conservation, the real and imaginary parts of A are intimately related, and the value of the

imaginary component must fall within a specific range - a detailed discussion on this topic is

given in Appendix A.2.

The sum in equation (2.1) essentially means that any scattered wave arriving at xR must

have come from one of the N scatterers; hence it must have arrived at the scatterer (Ψ(x(i))),

been scattered (amplitude and phase scaled by A(i)), and must then have propagated to the

receiver (G(xR,x
(i))). The entire series of multiple scattering interactions is therefore included

intrinsically within term Ψ(x(i)).

By the same reasoning, the total wavefield Ψ(x(i)) reaching scatterer (i) can be expressed

as the sum of the direct and scattered wavefield, where the latter must have been scattered from

any and all of the other scatterers:

Ψ(x(i)) = Ψ0(x
(i)) +

N∑
j=1
j 6=i

Ψ(x(j))A(j)G(x(i),x(j)) , (2.3)

where Ψ0(x
(i)) is the direct wavefield from xS to scatterer (i), Ψ(x(j)) denotes the total

wavefield reaching scatterer (j) located at x(j), A(j) is the scattering amplitude of scatterer

(j), and G(x(i),x(j)) is the full Green’s function between x(j) and x(i).
By swapping the order of terms, expressing the wavefields Ψ(x(i)) and Ψ0(x

(i)) as
vectors, and arranging the terms A(j)G(x(i),x(j)) into a square matrix of dimension equal to
the number of scatterers, equation (2.3) can be re-written as

Ψ0(x(1))

Ψ0(x(2))

. . .

Ψ0(x(N))



= −


−1 A(2)G(x(1),x(2)) . . . A(N)G(x(1),x(N))

A(1)G(x(2),x(1)) −1 . . . A(N)G(x(2),x(N))

. . . . . . . . . . . .

A(1)G(x(N),x(1)) A(2)G(x(N),x(2)) . . . −1




Ψ(x(1))

Ψ(x(2))

. . .

Ψ(x(N))

 ,

(2.4)
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Chapter 2. Theory and Applications

Figure 2.1. The total wavefield reaching a receiver at xR from a source at xS , and scattered by a number
of diffractors (e.g. x(i) , x(j) ), is given by the sum of a direct term (purple arrow) and a multiply scattered
term (sum of all of the black arrows), as indicated in equation (2.1).

where the term on the left-hand side is defined to be a vector Ψ0 containing the direct

wavefields from the source at xS to each scatterer, the first term on the right-hand side is

matrix M containing the interaction terms between all scatterers, and the second term on the

right-hand side is vector Ψ containing the total wavefields arriving at each scatterer. In

compact form, this equation thus becomes

Ψ0 = −MΨ , (2.5)

and since both Ψ0 and M can be calculated using equation (2.2) and the Green’s function

formulae in Appendix A.1, equation (2.5) can be solved numerically by matrix inversion:

Ψ = −M−1Ψ0 . (2.6)

Equation (2.6) gives a vector containing the total field that reaches each scatterer. When

inserted into equation (2.1), this term can therefore be used to evaluate the total field that

reaches the receiver at xR.

The equations above thus provide an exact representation of the monopole wavefield

through a scattering medium of constant background velocity produced by an impulsive

source at xS and recorded by a receiver at xR, including all orders of interactions between the

scatterers. The only possible sources of inaccuracy in practice are numerical, due to the finite

word storage length of a real number, and any approximation in the matrix inversion in

equation (2.6). The inverse problem in equation (2.6) is solved in Matlab using the

mldivide operation, which seeks a solution by performing a general triangular factorisation

that uses LU decomposition of M with partial pivoting (MathWorks, 2012). If matrix M is

singular, the solution to equation (2.6) either does not exist or it is non-unique. In all of our

experiments, the inverse problem in equation (2.6) was always well-posed2. In the case of

dipole (derivative) sources and receivers, as used for example in seismic interferometry

(Wapenaar, 2004; van Manen et al., 2005, 2006; Wapenaar & Fokkema, 2006), equations
2If the solution to equation (2.6) is non-unique, a least-squares solution may be found by replacing the

mldivide operation by pinv at lines 581-582 and 585-586 of model gfs p scat acoust.m.
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(2.1)-(2.3) need to be slightly modified to take into account whether differentiation is

performed at the source (to obtain a dipole source) or at the receiver (to obtain a dipole

receiver). When dipole sources or receivers are used, the direct wavefield in equation (2.2)

becomes

Ψ′0(xR) = ∂mΨ0(xR)

= s(ω)∂mG(xR,xS) ,
(2.7)

where ∂mG(xR,xS) is the partial derivative of the Green’s function between source xS and

receiver xR along the m-direction, evaluated at xS for a dipole source and at xR for a dipole

receiver.

When differentiation is performed with respect to sources, from equation (2.3) we get

Ψ′(x(i)) = Ψ′0(x
(i)) +

N∑
j=1
j 6=i

Ψ′(x(j))A(j)G(x(i),x(j)) , (2.8)

where Ψ′0(x
(i)) is the direct dipole-source wavefield to scatterer (i). The total dipole-source

wavefield recorded by receiver xR is given by

Ψ′(xR) = Ψ′0(xR) +
N∑
i=1

Ψ′(x(i))A(i)G(xR,x
(i)) . (2.9)

When differentiation is performed with respect to receivers, the total wavefield recorded

by a dipole receiver at xR is simply given by:

Ψ′(xR) = Ψ′0(xR) +
N∑
i=1

Ψ(x(i))A(i)∂mG(xR,x
(i)) , (2.10)

where ∂mG(xR,x
(i)) is the partial derivative of the Green’s function between scatterer (i) and

receiver xR evaluated along the m-direction at xR. Equations (2.7)-(2.10) can therefore be

used to solve a similar inverse problem to that in equation (2.6), to obtain the total wavefield

from source xS to receiver xR when dipole or derivative Green’s functions are used.

2.2 Acoustic Green’s Functions from Seismic Interferometry

The term seismic interferometry refers to a set of methods of constructing Green’s functions

by cross-correlation (Wapenaar, 2004; van Manen et al., 2005, 2006; Wapenaar & Fokkema,

2006), convolution (Slob et al., 2007; Slob & Wapenaar, 2007) or deconvolution (Vasconcelos

& Snieder, 2008a,b; Wapenaar et al., 2008; Wapenaar & van der Neut, 2010; Wapenaar et al.,

2011; Minato et al., 2011) of seismic wavefields. Inter-receiver interferometry by

cross-correlation uses a boundary of seismic sources (active sources such as dynamite or
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Figure 2.2. Schematic illustration of a typical geometry for correlational seismic interferometry. Two
receivers (blue triangles) are surrounded by a boundary of sources (red explosions); at each source
position, the boundary normal is denoted by n̂. The method of seismic interferometry uses one of the
receivers (e.g. xA) as a ‘virtual’ (imagined) source, and constructs the signal (Green’s function) as though
this source was recorded by the other receiver (e.g. xB).

passive sources such as microseisms), to construct the Green’s function between pairs of

receivers located within the boundary as though one of the receivers had actually been a

source that was recorded by the other receiver (figure 2.2).

Interferometry is a good field of application to test and demonstrate the Foldy code as it is

a field in rapid development where new algorithms are being developed monthly (for reviews

see Curtis et al. (2006), Wapenaar et al. (2010a,b), Galetti & Curtis (2012)). Since it is exact,

the Foldy method of acoustic wavefield modelling is useful for testing these new algorithms.

This is particularly true because, as we shall see, improvements and deficiencies associated

with each algorithm may only be subtly different from those of other algorithms, implying that

the accuracy of the modelling code used for testing is paramount.

Acoustic interferometric modelling formulae in the inter-receiver case have so far been

derived by Wapenaar & Fokkema (2006) and van Manen et al. (2005). However, due to

differences in the type of sources used in the two studies and to a different sign convention in

the source term, the interferometric equations resulting from the two papers differ slightly. In

this section, the differences between the two approaches are described and the resulting

interferometric modelling formulae are given in both the frequency and time domain.

In all subsequent formulae, the following symbols and conventions are used: ρ and c are

the medium density and propagation velocity; ι =
√
−1 is the imaginary unit; the superscript

star ∗ denotes complex conjugation in the frequency domain (equivalent to time-reversal in

the time domain, if applied to all terms in the FT of a time series); ⊗ denotes convolution

(which is equivalent to crosscorrelation when one of the two signals is time-reversed); ∂j
represents partial differentiation in the xj-direction with respect to the source coordinate; nj
is the component of the boundary normal along the xj-direction; G and ∂jG represent

Green’s functions as responses to monopole and dipole sources; ιω and 1
ιω denote

differentiation and integration over time performed in the frequency domain, respectively.
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2.2.1 Interferometric Formulae for Volume Injection Sources

Interferometric modelling formulae for volume injection sources are derived by Wapenaar &

Fokkema (2006) and van Manen et al. (2005). The sign difference between equations (21) and

(32) in Wapenaar & Fokkema (2006) and equation (4) in van Manen et al. (2005)) is given by

a difference in sign in the source term used in the two papers.

Wapenaar & Fokkema (2006)

Wapenaar & Fokkema (2006) choose impulsive point sources of volume injection (denoted by

a hat symbolˆ) which are defined as:

q̂0 =
δ(x− x0)

ιω
, (2.11)

where the subscript 0 can be used to denote either A or B. From the acoustic reciprocity

theorem of the correlation type they obtain the following expressions representing the

difference between the Green’s function from xA to xB and its complex conjugate (or

time-reverse in the time domain):

Ĝ(xB,xA, ω)− Ĝ∗(xB,xA, ω)

=

∫
S

1

ρ(x)

[(
∂jĜ(xB,x, ω)

)
Ĝ∗(xA,x, ω)− Ĝ(xB,x, ω)

(
∂jĜ

∗(xA,x, ω)
)]
nj dS

(2.12)

in the frequency domain, and

Ĝ(xB,xA, t)− Ĝ(xB,xA,−t)

=

∫
S

1

ρ(x)

[(
∂jĜ(xB,x, t)

)
⊗ Ĝ(xA,x,−t)− Ĝ(xB,x, t)⊗

(
∂jĜ(xA,x,−t)

)]
nj dS

(2.13)

in the time domain. By assuming a high frequency regime, that the bounding surface S is a

sphere with very large radius, and that no energy scatters back through the boundary once it has

left, equations (2.12) and (2.13) can be simplified using the Sommerfield radiation conditions

to eliminate the derivatives, giving:

Ĝ(xB,xA, ω)− Ĝ∗(xB,xA, ω) ≈ −2ιω

ρc

∫
S

Ĝ(xB,x, ω)Ĝ∗(xA,x, ω) dS (2.14)
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in the frequency domain, and

Ĝ(xB,xA, t)− Ĝ(xB,xA,−t) ≈ −
2

ρc

d

dt


∫
S

Ĝ(xB,x, t)⊗ Ĝ(xA,x,−t) dS

 (2.15)

in the time domain.

van Manen et al. (2005)

van Manen et al. (2005) choose impulsive point sources of volume injection (denoted by an

upside-down hat symbolˇ) which are defined as:

q̌0 = −δ(x− x0)

ιω
, (2.16)

where the subscript 0 can be used to denote either A or B. From the acoustic reciprocity

theorem of the correlation type they obtain the following expressions representing the

difference between the complex conjugate of the Green’s function between xA and xB and

the Green’s function between xA and xB:

Ǧ∗(xB,xA, ω)− Ǧ(xB,xA, ω)

=

∫
S

1

ρ(x)

[(
∂jǦ(xB,x, ω)

)
Ǧ∗(xA,x, ω)− Ǧ(xB,x, ω)

(
∂jǦ

∗(xA,x, ω)
)]
nj dS

(2.17)

in the frequency domain, and

Ǧ(xB,xA,−t)− Ǧ(xB,xA, t)

=

∫
S

1

ρ(x)

[(
∂jǦ(xB,x, t)

)
⊗ Ǧ(xA,x,−t)− Ǧ(xB,x, t)⊗

(
∂jǦ(xA,x,−t)

)]
nj dS

(2.18)

in the time domain. By assuming the same far-field conditions as for the Wapenaar & Fokkema

(2006) equations above, equations (2.17) and (2.18) can be simplified to

Ǧ∗(xB,xA, ω)− Ǧ(xB,xA, ω) ≈ −2ιω

ρc

∫
S

Ǧ(xB,x, ω)Ǧ∗(xA,x, ω) dS (2.19)

in the frequency domain, and

Ǧ(xB,xA,−t)− Ǧ(xB,xA, t) ≈ −
2

ρc

d

dt


∫
S

Ǧ(xB,x, t)⊗ Ǧ(xA,x,−t) dS

 (2.20)

in the time domain.
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2.2.2 Interferometric Formulae for Volume Injection Rate Sources

Interferometric modelling formulae for volume injection rate sources are derived by Wapenaar

& Fokkema (2006) but not by van Manen et al. (2005). However, they can easily be derived

using the van Manen et al. (2005) approach and are therefore given in this section. Again, the

sign difference in the solution arises from the different sign used in the source term.

Wapenaar & Fokkema (2006)

Wapenaar & Fokkema (2006) choose impulsive point sources of volume injection rate (denoted

by a double hat symbolˆ̂) which are defined as:

ˆ̂q0 = δ(x− x0) , (2.21)

where the subscript 0 can be used to denote either A or B. From the acoustic reciprocity

theorem of the correlation type they obtain the following expressions representing the sum of

the Green’s function between xA and xB and its complex conjugate (or time-reverse in the

time domain):

ˆ̂
G(xB,xA, ω) +

ˆ̂
G∗(xB,xA, ω)

= − 1

ιω

∫
S

1

ρ(x)

[(
∂j

ˆ̂
G(xB,x, ω)

)
ˆ̂
G∗(xA,x, ω)− ˆ̂

G(xB,x, ω)
(
∂j

ˆ̂
G∗(xA,x, ω)

)]
nj dS

(2.22)

in the frequency domain, and

ˆ̂
G(xB,xA, t) +

ˆ̂
G(xB,xA,−t)

= −
∫ 

∫
S

1

ρ(x)

[(
∂j

ˆ̂
G(xB,x, t)

)
⊗ ˆ̂
G(xA,x,−t)− ˆ̂

G(xB,x, t)⊗
(
∂j

ˆ̂
G(xA,x,−t)

)]
nj dS

 dt

(2.23)

in the time domain. By assuming the same conditions as in section 2.2.1, equations (2.22) and

(2.23) can be simplified to

ˆ̂
G(xB,xA, ω) +

ˆ̂
G∗(xB,xA, ω) ≈ 2

ρc

∫
S

ˆ̂
G(xB,x, ω)

ˆ̂
G∗(xA,x, ω) dS (2.24)

in the frequency domain, and

ˆ̂
G(xB,xA, t) +

ˆ̂
G(xB,xA,−t) ≈

2

ρc

∫
S

ˆ̂
G(xB,x, t)⊗ ˆ̂

G(xA,x,−t) dS (2.25)
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in the time domain.

A van Manen et al. (2005)-like approach

Similarly to the previous case, impulsive point sources of volume injection rate (denoted by an

upside-down double hat symbolˇ̌) can be defined as:

ˇ̌q0 = −δ(x− x0) , (2.26)

where the subscript 0 can be used to denote either A or B. From the acoustic reciprocity

theorem of the correlation type, the following expressions representing the sum of the Green’s

function between xA and xB and its complex conjugate (or time-reverse in the time domain)

can be obtained:

ˇ̌G(xB,xA, ω) + ˇ̌G∗(xB,xA, ω)

=
1

ιω

∫
S

1

ρ(x)

[(
∂j

ˇ̌G(xB,x, ω)
)

ˇ̌G∗(xA,x, ω)− ˇ̌G(xB,x, ω)
(
∂j

ˇ̌G∗(xA,x, ω)
)]
nj dS

(2.27)

in the frequency domain, and

ˇ̌G(xB,xA, t) + ˇ̌G(xB,xA,−t)

=

∫ 
∫
S

1

ρ(x)

[(
∂j

ˇ̌G(xB,x, t)
)
⊗ ˇ̌G(xA,x,−t)− ˇ̌G(xB,x, t)⊗

(
∂j

ˇ̌G(xA,x,−t)
)]
nj dS

 dt

(2.28)

in the time domain. By assuming the same conditions as in section 2.2.1, equations (2.27) and

(2.28) can be simplified to

ˇ̌G(xB,xA, ω) + ˇ̌G∗(xB,xA, ω) ≈ − 2

ρc

∫
S

ˇ̌G(xB,x, ω) ˇ̌G∗(xA,x, ω) dS (2.29)

in the frequency domain, and

ˇ̌G(xB,xA, t) + ˇ̌G(xB,xA,−t) ≈ −
2

ρc

∫
S

ˇ̌G(xB,x, t)⊗ ˇ̌G(xA,x,−t) dS (2.30)

in the time domain.
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2.2.3 Other Types of Interferometry

The interferometric formulae in the previous section can be used for the method of

inter-receiver interferometry, i.e. a Green’s function retrieval method that uses boundaries of

sources to construct the Green’s function between pairs of enclosed receivers. By applying

source-receiver reciprocity, the position of sources and receivers can be exchanged: this leads

to the derivation of interferometric formulae that can be used for inter-source interferometry,

which uses a boundary of receivers to construct the Green’s function between pairs of

enclosed sources, and source-receiver interferometry, which uses boundaries of sources and

receivers to construct the Green’s function between an enclosed source and receiver.

Interferometric formulae for inter-source and source-receiver interferometry, together with

examples of wavefield modelling and its application to inter-source and source-receiver

interferometry, are given in sections 2.4 and 2.5.

2.3 Worked Examples

The modelling code package contains five examples showing how inter-receiver, inter-source

and source-receiver interferometry can be applied to the modelling results: in examples 1-3,

the Green’s function between a virtual source and a receiver (examples 1 and 2) or an array of

receivers (example 3) is calculated using interferometry from a circular boundary of

surrounding sources; in example 4, the Green’s function between a source and a virtual

receiver is calculated using interferometry from a circular boundary of surrounding receivers;

in example 5, the Green’s function between a source and a receiver is calculated using

interferometry from two circular boundaries of surrounding sources and receivers. As shown

by the interferometric formulae in section 2.2, interferometry can be performed in both the

frequency domain (multiplication) and in the time domain (crosscorrelation). While example

1 uses time-domain crosscorrelation, examples 2-5 use frequency-domain crosscorrelation,

since the latter is generally more computationally efficient.

2.3.1 Example 1 - Inter-Receiver Interferometry in Time Domain

Run by executing the Matlab script example 1 inter receiver T.m. With the given

settings, the figures shown in Fig. 2.3, Fig. 2.4 and Fig. 2.5 are obtained. In this case, a

negative volume injection source is used, and interferometry is performed in the time-domain

using the van Manen et al. (2005) formula in equation (2.18). As indicated by the formula,

the causal (positive-time) part of the interferometric Green’s function is the negative of the

exact result modelled by placing a source at A and a receiver at B, while the acausal (negative-

time) part of the interferometric Green’s function matches the time-reverse of the true modelled

result.

Note: when interferometry is performed using the formulae in equations (2.15), (2.20),

(2.23), (2.28) (i.e. by changing method and inttype), differentiation/integration over time

20



Chapter 2. Theory and Applications

Figure 2.3. Geometry and true modelled trace in examples 1 and 2. Only every sixth source is plotted
for clarity.

has to be performed in the time domain using the Matlab functions cumtrapz and

gradient. This introduces errors in the reconstructed Green’s function which are not

present if interferometry is performed in the frequency domain (where differentiation and

integration are performed by multiplication and division by ιω, respectively).

2.3.2 Example 2 - Inter-Receiver Interferometry in Frequency Domain

Run by executing the Matlab script example 2 inter receiver F.m. With the given

settings, the figures shown in Fig. 2.3, Fig. 2.4 and Fig. 2.5 are obtained (same figures as

the previous example, as the two examples produce identical results). In this case, a negative

volume injection source is used, and interferometry is performed in the frequency-domain

using the van Manen et al. (2005) formula in equation (2.17). As indicated by the formula,

the causal (positive-time) part of the interferometric Green’s function is the negative of the

exact result modelled by placing a source at A and a receiver at B, while the acausal (negative-

time) part of the interferometric Green’s function matches the time-reverse of the true modelled

result.
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Figure 2.4. True trace and interferometric trace in both examples 1 and 2 (results are identical in the two
examples). When interferometry is performed using the van Manen et al. (2005) formulae in equations
(2.17) and (2.18), the causal part of the interferometric trace matches the negative of the true trace, while
the acausal part of the interferometric trace matches the time-reverse of the true trace.

Figure 2.5. ’True’ trace and interferometric trace in examples 1 and 2 as above. Top: the causal part
of the ’true’ trace is obtained by taking the negative of the true trace in Fig. 2.3, while the acausal
part is obtained by time-reversing the true trace in Fig. 2.3, according to the van Manen et al. (2005)
formulae in equations (2.17) and (2.18). Bottom left: frequency spectra. Bottom centre: real component
of frequency - equal to zero when using the interferometric formulae in equations (2.17) and (2.18).
Bottom right: imaginary component of frequency.
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Figure 2.6. Geometry and true traces modelled between a source positioned at the location of receiver
R and the receiver array shown (example 3). In the left panel, only every sixth source and every second
receiver are plotted for clarity.

2.3.3 Example 3 - Inter-Receiver Interferometry with an Array of Receivers

Run by executing the Matlab script example 3 inter receiver F array.m. With the

given settings, the figures shown in Fig. 2.6 and Fig. 2.7 are obtained. In this case, a negative

volume injection source is used, and interferometry is performed in the frequency-domain

using the van Manen et al. (2005) formula in equation (2.17). The wiggle plot is obtained using

function wiggles.m, which is included in the package as part of this example. As indicated

by the formula, the causal (positive-time) parts of the interferometric Green’s functions are the

negative of the exact results modelled by placing a source at R and recording the signals at the

receiver array, while the acausal (negative-time) parts of the interferometric Green’s functions

match the time-reverse of the true modelled results. Fig. 2.7 also shows the direct comparison

of signals recorded and reconstructed at the array receiver located 280 m from R.

2.4 Inter-Source Interferometry

The method of inter-source interferometry uses a boundary of receivers to construct the

Green’s function between pairs of enclosed sources (Fig. 2.8, top panel). For this

configuration, interferometric formulae can be obtained directly from inter-receiver

interferometry formulae by exchanging the position of sources (in this case xA and xB) and

receivers (in this case located on boundary S and denoted by x). A detailed description of the

method of inter-source interferometry is given by Curtis et al. (2009).

Inter-source interferometric formulae for volume injection and volume injection rate sources,

obtained using the van Manen et al. (2005) and Wapenaar & Fokkema (2006) approaches, are

23



Chapter 2. Theory and Applications

Figure 2.7. True traces and interferometric traces in example 3. Top: the causal part of the interferometric
traces matches the negative of the true traces, while the time-reverse of the acausal part of the
interferometric traces matches the true traces, according to equation (2.17). Bottom: comparison of
true and interferometric trace for a receiver at 280 m offset.

listed below (in the frequency domain only). Note that, contrary to the inter-receiver formulae

above, in this case the derivatives ∂j are taken at the receiver side:

◦ Volume injection sources, Wapenaar & Fokkema (2006) approach, monopole and dipole

receivers:

Ĝ(xB,xA, ω)− Ĝ∗(xB,xA, ω)

=

∫
S

1

ρ(x)

[(
∂jĜ(x,xB, ω)

)
Ĝ∗(x,xA, ω)− Ĝ(x,xB, ω)

(
∂jĜ

∗(x,xA, ω)
)]
nj dS

(2.31)

◦ Volume injection sources, Wapenaar & Fokkema (2006) approach, monopole receivers only:

Ĝ(xB,xA, ω)− Ĝ∗(xB,xA, ω) ≈ −2ιω

ρc

∫
S

Ĝ(x,xB, ω)Ĝ∗(x,xA, ω) dS (2.32)

◦ Volume injection sources, van Manen et al. (2005) approach, monopole and dipole receivers
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(Curtis et al., 2009):

Ǧ∗(xB,xA, ω)− Ǧ(xB,xA, ω)

=

∫
S

1

ρ(x)

[(
∂jǦ(x,xB, ω)

)
Ǧ∗(x,xA, ω)− Ǧ(x,xB, ω)

(
∂jǦ

∗(x,xA, ω)
)]
nj dS

(2.33)

◦ Volume injection sources, van Manen et al. (2005) approach, monopole receivers only

(Curtis et al., 2009):

Ǧ∗(xB,xA, ω)− Ǧ(xB,xA, ω) ≈ −2ιω

ρc

∫
S

Ǧ(x,xB, ω)Ǧ∗(x,xA, ω) dS (2.34)

◦ Volume injection rate sources, Wapenaar & Fokkema (2006) approach, monopole and dipole

receivers:

ˆ̂
G(xB,xA, ω) +

ˆ̂
G∗(xB,xA, ω)

= − 1

ιω

∫
S

1

ρ(x)

[(
∂j

ˆ̂
G(x,xB, ω)

)
ˆ̂
G∗(x,xA, ω)− ˆ̂

G(x,xB, ω)
(
∂j

ˆ̂
G∗(x,xA, ω)

)]
nj dS

(2.35)

◦ Volume injection rate sources, Wapenaar & Fokkema (2006) approach, monopole receivers

only:

ˆ̂
G(xB,xA, ω) +

ˆ̂
G∗(xB,xA, ω) ≈ 2

ρc

∫
S

ˆ̂
G(x,xB, ω)

ˆ̂
G∗(x,xA, ω) dS (2.36)

◦ Volume injection rate sources, van Manen et al. (2005)-like approach, monopole and dipole

receivers:

ˇ̌G(xB,xA, ω) + ˇ̌G∗(xB,xA, ω)

=
1

ιω

∫
S

1

ρ(x)

[(
∂j

ˇ̌G(x,xB, ω)
)

ˇ̌G∗(x,xA, ω)− ˇ̌G(x,xB, ω)
(
∂j

ˇ̌G∗(x,xA, ω)
)]
nj dS

(2.37)

◦ Volume injection rate sources, van Manen et al. (2005)-like approach, monopole receivers

only:

ˇ̌G(xB,xA, ω) + ˇ̌G∗(xB,xA, ω) ≈ − 2

ρc

∫
S

ˇ̌G(x,xB, ω) ˇ̌G∗(x,xA, ω) dS (2.38)
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Figure 2.8. Geometry and true modelled trace in example 4. Only every sixth receiver is plotted for
clarity.

2.4.1 Example 4 - Inter-Source Interferometry in Frequency Domain

Run by executing the Matlab script example 4 inter source F.m. With the given

settings, the figures shown in Fig. 2.8, Fig. 2.9 and Fig. 2.10 are obtained. In this case, a

positive volume injection rate source is used, and interferometry is performed in the

frequency-domain using the formula in equation (2.35). As indicated by the formula, the

causal (positive-time) part of the interferometric Green’s function matches the exact result

modelled by placing a source at A and a receiver at B, while the acausal (negative-time) part

of the interferometric Green’s function matches the time-reverse of the true modelled result.

2.5 Source-Receiver Interferometry

The method of source-receiver interferometry uses a boundary of sources and a boundary of

receivers to construct the Green’s function between an enclosed source and receiver (Fig.

2.11, top panel). For this configuration, interferometric formulae can be obtained by

combining inter-receiver and inter-source interferometry equations and denoting the sources
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Figure 2.9. True trace and interferometric trace in example 4. When interferometry is performed using
the formula in equation (2.35), the causal part of the interferometric trace matches the true trace, while
the acausal part of the interferometric trace matches the time-reverse of the true trace.

Figure 2.10. ’True’ trace and interferometric trace in example 4. Top: the causal part of the ’true’ trace
is the modelled trace in Fig. 2.8, while the acausal part is obtained by time-reversing the true trace in
Fig. 2.8, according to the formula in equation (2.35). Bottom left: frequency spectra. Bottom centre: real
component of frequency. Bottom right: imaginary component of frequency - equal to zero when using
the interferometric formula in equation (2.35).
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on boundary S by x, the receivers on boundary S′ by x′, and the central source and receiver

by xA and xB , respectively. A detailed description of the method of source-receiver

interferometry is given by Curtis & Halliday (2010).

Source-receiver interferometric formulae for volume injection and volume injection rate

sources, obtained using the van Manen et al. (2005) and Wapenaar & Fokkema (2006)

approaches, are listed below (in the frequency domain only). Note that in this case the

derivative ∂j is taken with respect to the source boundary S, while the derivative ∂j′ is taken

with respect to the receiver boundary S′:

◦ Volume injection sources, Wapenaar & Fokkema (2006) approach, monopole and dipole

sources and receivers:

Ĝ(xB,xA, ω)− Ĝ∗(xB,xA, ω)

=

∫
S′

1

ρ(x′)

{(
∂j′

[∫
S

1

ρ(x)

[(
∂jĜ(x′,x, ω)

)
Ĝ∗(xB,x, ω)

−Ĝ(x′,x, ω)
(
∂jĜ

∗(xB,x, ω)
)]
nj dS

])
Ĝ∗(x′,xA, ω)

−

[∫
S

1

ρ(x)

[(
∂jĜ(x′,x, ω)

)
Ĝ∗(xB,x, ω)

−Ĝ(x′,x, ω)
(
∂jĜ

∗(xB,x, ω)
)]
nj dS

](
∂j′Ĝ

∗(x′,xA, ω)
)}

nj′ dS′

(2.39)

◦ Volume injection sources, Wapenaar & Fokkema (2006) approach, monopole sources and

receivers only:

Ĝ(xB,xA, ω)− Ĝ∗(xB,xA, ω)

≈ −2ιω

ρc

∫
S′

−2ιω

ρc

∫
S

Ĝ(x′,x, ω)Ĝ∗(xB,x, ω) dS

 Ĝ∗(x′,xA, ω) dS′
(2.40)

◦ Volume injection sources, van Manen et al. (2005) approach, monopole and dipole sources
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and receivers (Curtis & Halliday, 2010):

Ǧ∗(xB,xA, ω)− Ǧ(xB,xA, ω)

=

∫
S′

1

ρ(x′)

{(
∂j′

[∫
S

1

ρ(x)

[(
∂jǦ(x′,x, ω)

)
Ǧ∗(xB,x, ω)

−Ǧ(x′,x, ω)
(
∂jǦ

∗(xB,x, ω)
)]
nj dS

])
Ǧ∗(x′,xA, ω)

−

[∫
S

1

ρ(x)

[(
∂jǦ(x′,x, ω)

)
Ǧ∗(xB,x, ω)

−Ǧ(x′,x, ω)
(
∂jǦ

∗(xB,x, ω)
)]
nj dS

] (
∂j′Ǧ

∗(x′,xA, ω)
)}

nj′ dS′

(2.41)

◦ Volume injection sources, van Manen et al. (2005) approach, monopole sources and

receivers only (Curtis & Halliday, 2010):

Ǧ∗(xB,xA, ω)− Ǧ(xB,xA, ω)

≈ −2ιω

ρc

∫
S′

−2ιω

ρc

∫
S

Ǧ(x′,x, ω)Ǧ∗(xB,x, ω) dS

 Ǧ∗(x′,xA, ω) dS′
(2.42)

◦ Volume injection rate sources, Wapenaar & Fokkema (2006) approach, monopole and dipole

sources and receivers:

ˆ̂
G(xB,xA, ω) +

ˆ̂
G∗(xB,xA, ω)

= − 1

ιω

∫
S′

1

ρ(x′)

{(
∂j′

[
− 1

ιω

∫
S

1

ρ(x)

[(
∂j

ˆ̂
G(x′,x, ω)

)
ˆ̂
G∗(xB,x, ω)

− ˆ̂
G(x′,x, ω)

(
∂j

ˆ̂
G∗(xB,x, ω)

)]
nj dS

])
ˆ̂
G∗(x′,xA, ω)

−

[
− 1

ιω

∫
S

1

ρ(x)

[(
∂j

ˆ̂
G(x′,x, ω)

)
ˆ̂
G∗(xB,x, ω)

− ˆ̂
G(x′,x, ω)

(
∂j

ˆ̂
G∗(xB,x, ω)

)]
nj dS

](
∂j′

ˆ̂
G∗(x′,xA, ω)

)}
nj′ dS′

(2.43)

◦ Volume injection rate sources, Wapenaar & Fokkema (2006) approach, monopole sources
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and receivers only:

ˆ̂
G(xB,xA, ω) +

ˆ̂
G∗(xB,xA, ω)

≈ 2

ρc

∫
S′

 2

ρc

∫
S

ˆ̂
G(x′,x, ω)

ˆ̂
G∗(xB,x, ω) dS

 ˆ̂
G∗(x′,xA, ω) dS′

(2.44)

◦ Volume injection rate sources, van Manen et al. (2005)-like approach, monopole and dipole

sources and receivers:

ˇ̌G(xB,xA, ω) + ˇ̌G∗(xB,xA, ω)

=
1

ιω

∫
S′

1

ρ(x′)

{(
∂j′

[
1

ιω

∫
S

1

ρ(x)

[(
∂j

ˇ̌G(x′,x, ω)
)

ˇ̌G∗(xB,x, ω)

− ˇ̌G(x′,x, ω)
(
∂j

ˇ̌G∗(xB,x, ω)
)]
nj dS

])
ˇ̌G∗(x′,xA, ω)

−

[
1

ιω

∫
S

1

ρ(x)

[(
∂j

ˇ̌G(x′,x, ω)
)

ˇ̌G∗(xB,x, ω)

− ˇ̌G(x′,x, ω)
(
∂j

ˇ̌G∗(xB,x, ω)
)]
nj dS

](
∂j′

ˇ̌G∗(x′,xA, ω)
)}

nj′ dS′

(2.45)

◦ Volume injection rate sources, van Manen et al. (2005)-like approach, monopole sources and

receivers only:

ˇ̌G(xB,xA, ω) + ˇ̌G∗(xB,xA, ω)

≈ − 2

ρc

∫
S′

− 2

ρc

∫
S

ˇ̌G(x′,x, ω) ˇ̌G∗(xB,x, ω) dS

 ˇ̌G∗(x′,xA, ω) dS′
(2.46)

2.5.1 Example 5 - Source-Receiver Interferometry in Frequency Domain

Run by executing the Matlab script example 5 source receiver F.m. With the given

settings, the figures shown in Fig. 2.11, Fig. 2.12 and Fig. 2.13 are obtained. In this case,

a positive volume injection source is used, and interferometry is performed in the frequency-

domain using the formula in equation (2.40) (N.B.: in this example, the inter-source step of

source-receiver interferometry uses only the causal part of the Green’s function constructed

from the first inter-receiver step, rather than the homogeneous Green’s function (difference

between the Green’s function and its complex conjugate) as given in equation (2.40)). As

indicated by the formula, the causal (positive-time) part of the interferometric Green’s function

matches the exact result modelled by placing a source at A and a receiver at B, while the

acausal (negative-time) part of the interferometric Green’s function matches the negative time-

reverse of the true modelled result.
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Figure 2.11. Geometry and true modelled trace in example 5. Only every fifth source and every seventh
receiver are plotted for clarity.

Figure 2.12. True trace and interferometric trace in example 5. When interferometry is performed using
the formula in equation (2.40), the causal part of the interferometric trace matches the true trace, while
the acausal part of the interferometric trace matches the negative time-reverse of the true trace.
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Figure 2.13. ’True’ trace and interferometric trace in example 5. Top: the causal part of the ’true’ trace
is obtained by taking the true modelled trace in Fig. 2.11, while the acausal part is obtained by time-
reversing the negative of true trace in Fig. 2.11, according to the formula in equation (2.40). Bottom
left: frequency spectra. Bottom centre: real component of frequency - equal to zero when using the
interferometric formula in equation (2.40). Bottom right: imaginary component of frequency.

2.6 Disclaimer

To the best of our knowledge this code is correct, error-free, and produces the results given in

the examples above, as of March 2013 using the Linux version of Matlab 7.14.0 (R2012a).

We can not guarantee its accuracy however. If after your own detailed investigation you

believe there are errors in the code or worked examples, please contact Erica Galetti at

erica.galetti@ed.ac.uk and/or Andrew Curtis at Andrew.Curtis@ed.ac.uk.
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APPENDIX A

More Equations

A.1 Analytic Monopole and Dipole Green’s Functions1

The monopole Green’s function (impulse response) in a medium with constant velocity c

satisfies the following equation in the frequency domain (the Helmholtz equation):

∇2G(x,x0, ω) + k2G(x,x0, ω) = −δ(x− x0) , (A.1)

where G(x,x0, ω) is the Green’s function at location x due to a source at location x0, k is the

wavenumber (which satisfies k = ω/c, where ω is angular frequency), and the term δ(x− x0)

represents the source defined as a spatio-temporal impulse (delta function) acting at location x0

at time t = 0. The Helmholtz equation can be solved for the Green’s function inN dimensions,

and full derivations in one, two or three dimensions can be found in Snieder (2009). The

solution to the Helmholtz equation is given in one dimension by

G1D(x, x0) = − ι

2k
e−ιk|x−x0|

= − 1

2k
e−ι(k|x−x0|−

π
2 ) ,

(A.2)

in two dimensions by

G2D(x,x0) = − ι
4
H

(2)
0 (k|x− x0|) , (A.3)

1This section is an (adapted) excerpt from Galetti et al. (2013).
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in two dimensions (far-field case) by

G2D far(x,x0) = − ι
4
e−ι(k|x−x0|−π4 )

√
2

πk|x− x0|

= −1

4
e−ι(k|x−x0|− 3π

4 )

√
2

πk|x− x0|
,

(A.4)

and in three dimensions by

G3D(x,x0) =
1

4π

e−ιk|x−x0|

|x− x0|
, (A.5)

where H(2)
0 is the Hankel function of the second kind and order 0, and the imaginary unit

ι =
√
−1 has been taken inside the exponential term in the second line of equations (A.2) and

(A.4).

Dipole Green’s functions may be obtained from spatial differentiation of equations (A.2)-

(A.5) and are given by

∂G1D(x, x0) = −ιkG1D(x, x0) (A.6)

in one dimension, by

∂mG
2D(x,x0) =

ιk

4
cos(φm)H

(2)
1 (k|x− x0|) , (A.7)

in two dimensions, by

∂mG
2D far(x,x0) = −G2D far(x,x0) cos(φm)

[
ιk +

1

2|x− x0|

]
, (A.8)

in two dimensions (far-field case), and by

∂mG
3D(x,x0) = −G3D(x,x0) cos(φm)

[
ιk +

1

|x− x0|

]
, (A.9)

in three dimensions. H(2)
1 is the Hankel function of the second kind and order 1, and the term

cos(φm) is the direction cosine of the receiver position x with respect to the source location

x0 along the m-direction, i.e., the cosine of the angle between vector x − x0 and the m-

direction. Note that the above equations assume the exponential term in the Fourier transform

from frequency to time domain to be eιωt, which is the sign convention used by Matlab (as

opposed to e−ιωt, which is more usual in Geophysics, for example).
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A.2 Scattering Amplitude in D-Dimensions2

For a certain distribution of N isotropic point scatterers, the scattering amplitude A(i) of

scatterer (i) located at x(i) is a complex quantity that relates the total wavefield Ψ0(x
(i))

incident on the scatterer to the scattered wavefield ΨS(x) measured at x, according to

ΨS(x) = Ψ0(x
(i))A(i)G(x,x(i)) , (A.10)

where G(x,x(i)) is the Green’s function between x(i) and x. As shown by Snieder (1999), the

scattering amplitude contains the superposition of all possible multiple scattering interactions

with the same scatterer and, since scattering is assumed to be isotropic, is independent of the

angle of incidence.

The real and imaginary parts of the scattering amplitude are related via the optical theorem

(generally, an optical theorem describes the conservation of energy between a wave incident on

a scattering object and the resulting wave scattered by that object). In simple acoustic media

with uniform background velocity, the relationship between the real and imaginary part of the

scattering amplitude can be derived by equating the total energy loss for unit incident wavefield

(the so-called total cross-section ΩT ) to the total scattered energy (the so-called scattering

cross-section ΩS). This approach assumes that no energy is lost to anelastic attenuation, hence

the energy loss of the incident wavefield is due to scattering alone.

In two dimensions, the total and scattering cross-sections are given respectively by

(Groenenboom & Snieder, 1995)

ΩT = −=(A)

k
(A.11)

and

ΩS =
|A|2

4k
, (A.12)

where the latter expression is obtained by using the far-field Green’s function (equation A.4)

to get ΨS in equation A.10 and integrating the power of the scattered field |ΨS |2 = ΨSΨ∗S
over 2π. Using a similar approach, expressions similar to those in the above equations can be

derived in one and three dimensions, and by equating the total and scattering cross-sections the

relationships between the real and imaginary parts of the scattering amplitude can be obtained

in one, two and three dimensions (Snieder, 1999):

<(A) = ±


(−=(A) [2k + =(A)])1/2 in 1D

(−=(A) [4 + =(A)])1/2 in 2D(
−=(A)

[
4π

k
+ =(A)

])1/2

in 3D

(A.13)

These expressions impose the following constraints on the value of the imaginary part of the
2This section is an (adapted) excerpt from Galetti et al. (2013).
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scattering amplitude:
−2k ≤ =(A) ≤ 0 in 1D

−4 ≤ =(A) ≤ 0 in 2D

−4π

k
≤ =(A) ≤ 0 in 3D

(A.14)

The relationships between the real and imaginary components ofA are of particular importance

as they ensure that the scattering strength of each scatterer satisfies the requirement of energy

conservation. Optical theorems for more complex scattering media also exist (Halliday &

Curtis, 2009; Douma et al., 2011; Wapenaar & Douma, 2012) and can be applied to obtain a

correct estimate of the scattering amplitude. However, the details of these theorems will not be

discussed here as their application is beyond the scope of our simple modelling code.

A.3 A Note on Source Types

Because of the different sign conventions used by Wapenaar & Fokkema (2006) and van Manen

et al. (2005), the following relationships arise between the Green’s functions listed in section

A.1 and those used in interferometry (section 2.2):

Ĝ = G (A.15)

ˆ̂
G = ιωG (A.16)

Ǧ = −G (A.17)

ˇ̌G = −ιωG (A.18)

where G can denote either the one-, two-, or three-dimensional Green’s function as in

equations (A.2)-(A.5), and the same hat symbol convention as in section 2.2 is used to denote

the interferometric Green’s functions.
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