

ge0mlib

GNU Octave, ge0mlib, git installation

Vol. 01-00

Ivan V. Dmitriev

09.01.2024

ge0mlib.com 2

Contents

Introduction ... 3

1 GNU Octave .. 4

1.1 GNU Octave installation ... 4

1.2 Additional packages (libraries) installation ... 5

2 ge0mlib installation (MatLab, GNU Octave) .. 9

3 Git .. 11

3.1 Purposes of using Git and Github ... 11

3.2 Git installation ... 11

3.3 Creating a git project and downloading ge0mlib from the repository ... 14

3.4 Navigating history in Git ... 15

3.5 Launching the GUI .. 17

4 Structure of the script and script commands ... 18

Conclusion... 21

ge0mlib.com 3

Introduction

The ge0mlib library is designed for marine engineering geophysics data processing. The

processing functions are developed in MatLab 2018b (https://mathworks.com/) and adapted for the free

software GNU Octave 8.4.0 (https://www.octave.org). Project website: https://ge0mlib.com/. The library

is available on Git Hub: https://github.com/ge0mlib/ge0mlib.

This document is written for a non-programmer Windows user who needs to “make data

processing” using a ready-made script written for MatLab or Octave. To complete the task, there are:

1) m-file with a script for “data processing”, previously written for the MatLab and/or GNU Octave

programming language (the development date can be found at the end of the script text);

2) a list of additional MatLab and/or GNU Octave libraries that must be installed to run the script (written

in the comments at the beginning of the script text);

3) a description of the script commands or verbal instructions of the form “processed with this script” (a

description of each individual command should be given in the text of the script, and examples of

“working sequences” of commands should also be given there).

The purpose of this document is to provide a quick installation of the software to begin

processing data. The document describes the following steps:

-- download and install GNU Octave (Windows version);

-- download and install additional packages (libraries) for GNU Octave (Windows);

-- download and install the ge0mlib library;

-- download and install Git (Windows version);

-- restoring a snapshot of the ge0mlib library to the date the script was developed using Git;

-- work with script commands (description of the principles of constructing script commands and

information contained in the script body-text).

The text of the document includes a little more information than necessary. However, this

information makes you feel more comfortable working with GNU Octave, ge0mlib and Git. Such

“optional reading” text is highlighted in blue.

https://mathworks.com/
https://www.octave.org/
https://ge0mlib.com/
https://github.com/ge0mlib/ge0mlib

ge0mlib.com 4

1 GNU Octave

1.1 GNU Octave installation

Octave distribution kit is downloaded from https://octave.org/download. At the moment of

writing this text, it is the file octave-8.4.0-w64-installer.exe (for Win64).

The Octave command window after installation, with the tabs moved for convenience, is shown

below. Pay attention to the Variable Editor, Command History and Workspace tabs.

https://octave.org/download

ge0mlib.com 5

The m-file debugger window is shown below. It may be convenient to enter a sequence of script

commands in the debugger window, then save this file in the Script folder (a description of the folder is

given below in section 2, when describing the installation of ge0mlib). After this, instead of entering a

“sequence of script commands” into the command window, you can enter only the name of the file

generated in the debugger (this file itself, in fact, will be a simple script).

1.2 Additional packages (libraries) installation

Additional libraries in Octave are usually called “packages”, and in MatLab – “toolbox”. The link

to the page with the new version of the official packages for Octave: https://gnu-

octave.github.io/packages/.

The link to the page with old versions of packages: https://octave.sourceforge.io/packages.php

There is a list of packages below look useful for solving marine geophysics problems. Of course,

the selection is very subjective and is intended primarily to give a general idea of the packages included

in GNU Octave.

control – Computer-Aided Control System Design (CACSD) Tools for GNU Octave, based on the

SLICOT Library.

data-smoothing – Algorithms for smoothing noisy data.

divand – Performs an n-dimensional variational analysis (interpolation) of arbitrarily located

observations.

fda – Functional Data Analysis.

fileio – I/O function for files holding structured data, such as JSON and XML files.

fuzzy-logic-toolkit – A mostly MATLAB-compatible fuzzy logic toolkit for Octave.

geographiclib – Native Octave/MATLAB implementations of a subset of the C++ library,

GeographicLib. Key components of this toolbox are: (a) Geodesics, direct, inverse, area

calculations; (b) Projections, transverse Mercator, polar stereographic, etc; (c) Grid systems,

UTM, UPS, MGRS; (d) Geoid lookup, egm84, egm96, egm2008 geoids supported; (e)

Geometric transformations, geocentric, local cartesian; (f) Great ellipse, direct, inverse, area

calculations.

geometry – Library for extending MatGeom functionality.

https://gnu-octave.github.io/packages/
https://gnu-octave.github.io/packages/
https://octave.sourceforge.io/packages.php

ge0mlib.com 6

image – Functions for image processing, feature extraction, image statistics, spatial and geometric

transformations, morphological operations, linear filtering, and much more.

io – Input/Output in external formats.

linear-algebra – Additional linear algebra code, including matrix functions.

mapping – Simple mapping and GIS .shp .dxf and raster file functions.

matgeom – Geometry toolbox for 2D/3D geometric computing.

miscellaneous – Miscellaneous tools that don't fit somewhere else.

mvn – Multivariate normal distribution clustering and utility functions.

nan – A statistics and machine learning toolbox for data with and w/o missing values.

octproj – This package allows to call functions of PROJ library for cartographic projections and CRS

transformations.

optim – Non-linear optimization toolkit.

optiminterp – An optimal interpolation toolbox providing functions to perform a n-dimensional optimal

interpolations of arbitrarily distributed data points.

packajoozle – Enhanced package manager for GNU Octave.

pkg-octave-doc – This package provides functions for generating HTML pages that contain the help texts

of the functions of an octave package. The package is designed to work with installed packages

and use their INDEX file for creating the respective functions' HTML pages. The default layout

is based on boootstrap 5 and it follows the design of the Octave Packages GitHub page.

quaternion – Quaternion package for GNU Octave, includes a quaternion class with overloaded

operators.

signal – Signal processing tools, including filtering, windowing and display functions.

sparsersb – Interface to the librsb package implementing the RSB sparse matrix format for fast shared-

memory sparse matrix computations.

splines – Additional spline functions

sqlite – Basic Octave implementation of the sqlite toolkit

statistics – The Statistics package for GNU Octave.

statistics-resampling – Estimate bias, uncertainty (standard errors and confidence intervals) and test

hypotheses (p-values) using resampling methods. (Note that versions of this package <= 5.4.3

are named the statistics-bootstrap package).

stk – The STK is a (not so) Small Toolbox for Kriging. Its primary focus is on the

interpolation/regression technique known as kriging, which is very closely related to Splines

and Radial Basis Functions, and can be interpreted as a non-parametric Bayesian method using

a Gaussian Process (GP) prior. The STK also provides tools for the sequential and non-

sequential design of experiments. Even though it is, currently, mostly geared towards the

Design and Analysis of Computer Experiments (DACE), the STK can be useful for other

applications areas (such as Geostatistics, Machine Learning, Non-parametric Regression, etc.).

strings – Additional functions for manipulation and analysis of strings.

ge0mlib.com 7

struct – Additional structure manipulation functions.

In order for Octave to “see” the functions of a package, the path to it must be “registered in the

system”. In the Octave root folder, there are two folders with packages:

1) c:\Program Files\GNU Octave\Octave-8.4.0\mingw64\share\octave\8.4.0\m\ – the folder contains

"system-integrated" packages such as signal and statistics;

2) c:\Program Files\GNU Octave\Octave-8.4.0\mingw64\share\octave\packages\ – the folder contains

non-integrated packages, the paths for which were not initially registered in the system.

It is highly likely that the required package is located in these folders. Then you won't need to download it

from the Internet.

ge0mlib.com 8

You can see which paths are already registered in Octave using the Path Browser (the paths to all

packages, in the “m\” folder, are registered). Using the “Add Folder” button you can add paths to

additional packages, after which you need to click on the “Save” button to save the list of paths, and it

will be automatically loaded on subsequent Octave starts.

If the required package is not in the above folders, you need to find it on the Internet. For

example, when we go to the "data-smooth package" page, we see the window shown below. Copying the

“pkg install” command and path into the Octave command window, and then running it, should install the

data-smooth package directly from the Internet. You can also download the package and use the “pkg

install” command (with the path specified) to install it offline. You may need to additionally register the

path to the package after installation.

ge0mlib.com 9

2 ge0mlib installation (MatLab, GNU Octave)

You can download the ge0mlib library from the link https://ge0mlib.com/g/ge0mlib.zip, and then

unpack the archive to a convenient place. The archive contains the folders shown in the figure below.

The purpose of the folders is as follows:

-- Docs – contains documentation on working with the library (pdf format), as well as examples of scripts

(m-files and descriptions in pdf format; video materials are present on the site, but are not included

in the archive with the library);

-- External – folder for additional libraries that are used or planned to be used with ge0mlib. Currently it

is m_map, mksqlite-2.11-win64, n_vector;

-- Functions – functions of the ge0mlib library (the contents of the folder are available on Git Hub:

https://github.com/ge0mlib/ge0mlib);

-- Scripts – an empty folder for scripts, for local use. Here you need to put the m-file with a script that

needs to be executed to “process the data”. If you later write your own script or function, you can

also place them in this folder;

-- install.txt – a file with commands for registering paths (instead of using Path Browser).

To install ge0mlib, you can register the path to the m-files manually using the Path Browser or

write the path to the ge0mlib root folder in the first line of install.txt, then copy the text from the file into

the command window and press Enter (to execute the entered commands). An example of such setting

paths for the root folder 'c:\ge0mlib\Proj\' is shown in the figures below. When executing commands, the

presence of the corresponding subfolders in External, as well as the Functions and Scripts folders, will be

checked. If there are corresponding folders on the disk, they will be registered in Path and saved. If there

are no folders, then the paths will not be written (for example, if you delete the External folder in

advance, then the paths to the deleted additional libraries that were contained in External will not be

written to the Path file).

It should be noted that the ge0mlib library was originally written for MatLab, and after that the

functions were “adapted” for Octave. The purpose of this adaptation is to use free software that can be

installed on any computer without purchasing or manipulating a license (QGIS and Python are good

examples of such programs). At the same time, a small part of ge0mlib functions (using MatLab

toolboxes) may not work in Octave (at the moment, when developing functions, compatibility with

MatLab is primarily taken into account).

https://ge0mlib.com/g/ge0mlib.zip
https://github.com/ge0mlib/ge0mlib

ge0mlib.com 10

ge0mlib.com 11

3 Git

3.1 Purposes of using Git and Github

The contents of the Functions folder (ge0mlib library functions) use Git version control. The

ge0mlib library is available on Git Hub: https://github.com/ge0mlib/ge0mlib. The purpose of using Git,

discussed below, is to restore “snapshots” of a library made in the past and with a 90% chance you will

not need this information.

Since the functions in the library are gradually changing, the “old script” may not run with the

“new version of the library”. To run such scripts, it is convenient to be able to select a “snapshot” of the

library while writing the script. To do this, in the last line of the script code, the date of its develop must

be indicated. Using Git, you can select a “snapshot” (commit) prior to the date the script was created and

run it without having to make corrections to the code. The same applies to example scripts in the Docs

folder written after 12/26/2023.

The described solution has its drawbacks - of course, the old version of the library will contain all

the old bugs (which is a definite disadvantage), but there will be no new bugs (which is some advantage).

We assume that the script, written and tested at one time, produced adequate calculation results that were

not subject to bugs, and therefore can be used in the future. An alternative solution is to edit the script,

making changes to the command syntax (it is assumed that it has changed) for the new version of the

library. This is positively the best solution, but it requires time, knowledge, and testing how the modified

script works.

The main purpose of using a tool like Git is collaborative development. The library is free and

open to any changes. If you want to rewrite or add some functions, you can do this in a separate git

branch, which you can later upload to Git Hub and merge with the main git branch, including the

functions in the library. However, if you don't use Git, you can simply send the m-files and their

description to mail@ge0mlib.com, I will add them to Git Hub, documentation and library.

3.2 Git installation

The Git distribution is downloaded from https://git-scm.com/downloads. At the time of writing

the file is Git-2.43.0-64-bit.exe (for Win64). The git installation runs with default settings except

(1) changing the editor to Nano or another convenient one (third screenshot),

(2) checking the box to launch Git Bash in the last screenshot.

Both these actions are not critical, since after installing git you can independently replace the

editor in the git settings and run git itself.

https://github.com/ge0mlib/ge0mlib
mailto:mail@ge0mlib.com
https://git-scm.com/downloads

ge0mlib.com 12

ge0mlib.com 13

After installation, you need to run the commands below in the git window, by adding your

user.name and user.email. Commands can be copied and pasted using the right mouse button.

git config --global user.name "xxx"

git config --global user.email "xxxx@xxx.xxx"

git config --list

exit

ge0mlib.com 14

After executing the exit command, the git window will close.

3.3 Creating a git project and downloading ge0mlib from the repository

Before working with git, it is better to delete all files from the Functions folder to avoid conflicts

between file versions. In the first step, you can run git and go to the Functions folder using the cd

command, for example:

cd c:/ge0mlib/Proj/Functions

As an alternative, you can open git directly in the required folder by right-clicking.

After running git, you need to enter the following sequence of commands:

-- creating an invisible .git folder containing git information

git init

-- adding the path to the repository on Git Hub

git remote add orig https://github.com/ge0mlib/ge0mlib

-- copying repository files to the .git folder

git pull orig main

An example of the git window and the contents of the Functions folder after executing the

commands is shown below.

ge0mlib.com 15

3.4 Navigating history in Git

To list the “library snapshots” (commit), you need to use the command

git log

use the “q” key to exit. When the command is executed, git displays a list of “snapshots” (commits) with

information about the date and a unique hash code (name) for each commit.

ge0mlib.com 16

You need to select commit by date (so that the date is the closest date before the script date) and

use the hash code (in our example it is fbc64) with the “checkout” command:

git checkout fbc64

After the command is executed, the special git pointer HEAD will move to the commit with hash

code fbc64 and git will change the contents of the Functions folder to match the contents on the commit

date. The result of changing the contents of the Functions folder, for our example, is shown below.

After such a shift in the HEAD pointer, it is very preferably to create a new branch for this

commit (for example, with the name my001) using the command

git branch my001

Now we can switch between the "latest version" of the library and the "my001 version" using the

commands

git checkout main

git checkout my001

in this case, the contents of the Functions folder will be replaced each time. Strictly speaking, not all files

will be replaced, but only the tracked files contained in the commit (with the appropriate names and hash

code). If we make changes to such a tracked file, then when we try to switch between versions of the

library, an error message will be displayed, marked with a rectangle in the screenshot below.

ge0mlib.com 17

This is logical, because in the event of a switch, the changes made would be “lost” (erased). Now, in

order to perform the switch, we need to create a new commit with our changes. To do this, for instance,

you can run the following sequence of commands:

git add .

git commit -m "My changes in branch my001"

git checkout main

Further “deepening into the topic” requires a full study of working with git, which is beyond the

scope of this document.

3.5 Launching the GUI

You can select commit by date not only in the terminal, but also using the graphical interface. To

do this, by right-clicking you need to select not “Open Git Bash here”, but “Open Git GUI here” and then

– Visualize All Branch History.

In the window that opens, you can see the rendering of branches, commits, and hash codes.

ge0mlib.com 18

4 Structure of the script and script commands

For writing scripts for the ge0mlib library, there is a certain set of rules that are best adhered to so

that the use of scripts by other people is as convenient as possible for them.

Each script can execute multiple "script commands". For each script command, multiple "script

command parameters" can be passed. To execute a script command, you need to enter a command-to-

execute of the form in the MatLab or Octave window:

{'LoadMag1x8_r01','d:\002\1mag\0052_MAG_'};MagToolR01;

here:

MagToolR01 – name of the script (name of the file with the script that was copied to the Scripts folder);

{'LoadMag1x8_r01','d:\002\1mag\0052_MAG_'} – parameters of the script command, and the first

parameter is always the name of the script command. In curly braces, separated by commas, many

parameters of the script command that are required for its execution can be entered;

'LoadMag1x8_r01' – the name of the script command that executes a specific section of the script code;

'd:\002\1mag\0052_MAG_' – a script command parameter which, in our case, contains the path to a

specific file that will be used when running the script.

Let's consider the structure of the MagToolR01 script (for recalculating magnetic survey data),

which is shown in the figure below (only part of the code is shown). When creating scripts, it is advisable

to adhere to this structure at all times (line numbers, of course, are indicated for a specific example).

-- Script name (line 1);

-- Brief purpose of the script (line 2)

-- List of additional libraries required to execute the script (line 2);

-- Description of script commands and, if necessary, command parameters (lines 3-7);

-- Several examples with “working sequences” of commands, written after “Example” (in our case there

is only one such sequence, and it is given in line 8);

-- Blocks executed according to the conditions for each of the commands (conditions with command

names are shown in lines 11, 17 and 31);

-- A brief description of the command being executed at the beginning of each block (the description is

given as a comment on lines 11, 17 and 31);

-- An example of a command and script parameters for each block (examples are given as comments in

lines 12, 18, 32);

-- A section of code that requests input of script parameters if they were skipped when entering the

execution command. This code also contains descriptive text for each script parameter (lines 19, 33);

-- The clearvars function, executed at the end of each block (corresponding to the script command) to

remove “extra/temporary” variables (lines 29, 37);

-- Date of creation of the script, email for communication, MatLab and/or Octave environment indicating

the version for which the script was tested (comment in the last line 69: mail@ge0mlib.com

12/10/2023 MatLab2018b&Octave8.4.0).

ge0mlib.com 19

In addition, there are certain variable names (in the example given it is SU) and certain field

names for structures (in the example given these are DD, MM, YYYY, hh, mm, ss and others). Which are

specialized and common. Using these names will make the script text more readable (and sometimes even

necessary for the execution of functions in the code of which such “specialized” fields are written).

With the approach described above, “data processing” will be implemented as the sequential

execution of several script commands with the appropriate parameters. In our example, this will be

reading several files with magnetometer data (LoadMag1x8_r01, LoadMag8x1_r01 commands), some

mathematical calculations based on the loaded data (Interp_r01), outputting the calculation results to a file

(SaveMag8x1_r01 command). An example of a window with a completed working sequence of

MagToolR01 script commands is shown in the figure below.

ge0mlib.com 20

ge0mlib.com 21

Conclusion

The document covers:

-- installing the freely GNU Octave programming environment and its additional libraries;

-- installing the ge0mlib library;

-- installing git and using commands to get a commit (snapshot) of the ge0mlib library at some point in

the past.

An example of a script for recalculating magnetic survey data (UXO) is given. Considered where

the following information can be found in the script text:

-- List of additional libraries required to execute the script;

-- Description of script commands and command parameters;

-- Examples with “working sequences” of commands;

-- Date of creation of the script;

-- The environment used when testing the script (MatLab, Octave);

-- Email the script developer, to write to him all what you think about him.

The information provided allows you to install the software quickly and proceed to data

processing using a script (m-file).

